2023年度数学第三单元《圆柱表面积》教案五篇
位置: 首页 >教案设计 > 文章内容

2023年度数学第三单元《圆柱表面积》教案五篇

时间:2023-01-01 14:05:03 来源:网友投稿

数学第三单元《圆柱的表面积》教案1  教学目标:  1、初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的下面是小编为大家整理的2023年度数学第三单元《圆柱表面积》教案五篇,供大家参考。

2023年度数学第三单元《圆柱表面积》教案五篇

数学第三单元《圆柱的表面积》教案1

  教学目标:

  1、初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面积的含义的同时,培养学生的理解能力和探索意识。

  教学重点:

  掌握圆柱侧面积和表面积的计算方法。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征.

  2、口头回答下面问题.(删掉)

  (1)一个圆形花池,直径是5米,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长宽.

  3、理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积2

  二、圆柱的侧面积。

  1、圆柱面积的认识

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长高)

  2、侧面积练习:练习七第5题

  (1)学生审题,回答下面的问题

  ① 这两道题分别已知什么,求什么?

  ② 计算结果要注意什么?

  (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。

  (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

数学第三单元《圆柱的表面积》教案2

  教学目标

  1:理解圆柱体侧面积和表面积的含义。

  2:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  3:体验成功与失败的收获,体会合作的愉悦

  教学重点:动手操作展开圆柱的侧面积

  教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  教具准备: 圆柱表面展开图

  学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。 教学过程

  一、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说) 师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:...........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:..........

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  二、探索交流,解决问题。

  导语:圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的*面呢?(指名说)

  提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

  (展开的形状可能是长方形、*行四边形、正方形等)

  1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的.方式验证刚才的猜想。

  2.操作活动:(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3.小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长 × 宽

  ↓ ↓↓

  圆柱的侧面积 =底面周长× 高

  所以,圆柱的侧面积=底面周长×高

  S 侧= C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 师:如果圆柱展开是*行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出*行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  练习

  求圆柱的侧面积(只列式不计算)

  1. 底面周长是1.6米,高是0.7米

  2. 底面直径是2分米,高是45分米

  3. 底面半径是3.2厘米,高是5分米

  研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

  4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少*方厘米(学生独立完成后交流反馈)

  三,巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒

  提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少*方厘米?(得数保留整百*方厘米)

  重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百*方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

  3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少*方米?

  四.回顾整理,反思提升

  根据板书总结:本节课你收获了什么?老师希望同学们能够应用本节课所学知识制作出一个笔筒,送给你的好朋友,下课。

数学第三单元《圆柱的表面积》教案3

  一、教学目标

  【知识与技能】

  结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

  【过程与方法】

  通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

  【情感态度与价值观】

  能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

  二、教学重难点

  【教学重点】

  圆柱表面积的计算方法以及在生活中的应用。

  【教学难点】

  圆柱表面积的计算方法在生活中的应用。

  三、教学过程

  (一)导入新课

  师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)

  (二)生成原理

  (1)介绍圆柱的侧面积、底面积和表面积

  师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

  (2)创疑激趣

  师:我们知道,圆柱的底面是圆,我们已经掌握了圆的面积,可是圆柱的侧面是一个曲面,我们又该怎么求它的面积呢?

  (3)小组合作交流

  师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?(小组合作探究结合上节课所学的知识和圆柱的特征研究)ppt展示

  小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

  (4)学会计算圆柱的表面积

  师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)

  师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

  (三)深化原理

  圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。

  (四)应用原理

  如果给圆柱形笔筒侧面裹一层彩纸,笔筒底面半径是5cm,高是10cm。那么想想得准备多少彩纸?

  (五)课堂小结

  师:今天收获了哪些知识?能不能用今天所学的知识制作一个常用的学习用品?能否设计一个笔筒?在设计过程中需要解决哪些问题?

  生:测量、确定笔筒的大小

  师:如何确定?

  生:确定底面半径,还有笔筒的高

  师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。

  四、板书设计

数学第三单元《圆柱的表面积》教案4

  教学目的

  1.使学生认识圆柱的特征,能看懂圆柱的*面图;认识圆柱侧面的展开图。

  2.理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

  3.根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。

  教学过程

  一、复习:

  师:出示各种*面图形,让学生指出各图形面积的计算方法。重点突出圆的面积求解方法,并引出圆周长的求解方法。

  使学生熟悉圆的周长和面积公式:S=πr2,C=2πr或C=πd。

  二、新课

  1.导入新课

  教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征?引导学生复习长方体和正方体的一些特征。

  教师出示例题图例:观察下面这些物体,它们有什么特点?

  2.圆柱的认识。

  让学生拿着圆柱形的物体观察后,说出自己观察的结果。认识圆柱体的外部特征以及与长方体与正方体的区别。

  总结:长方体、正方体都是由*面围成的立体图形;而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。

  指出:(沿着这些圆柱形物体的轮廓画线)像这样的物体就叫做圆柱体,简称圆柱。这节课我们就来学习这种新的立体图形。

  指出:这样得到的图形就是圆柱体的几何图形。

  (1)认识底面

  教师拿出一个圆柱体:请大家再观察一下,这些圆柱的上、下两个面有什么特点?

  引导学生发现:圆柱的上、下两个面都是*面,并且它们是完全相同的两个圆。

  教师指出:圆柱的上、下两个面叫做底面。(在图上标出底面以及两个圆的圆心O)

  同时还要指出:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。

  (2)认识侧面

  让学生用手摸一摸圆柱周围的面,使学生发现圆柱有一个曲面。

  由此指出:圆柱的这个曲面叫做侧面。(在图上标出侧面。)

  (3)认识圆柱的高

  让学生看圆柱形物体,指出:圆柱的两个底面之间的距离叫做高。然后在图上标出高。

  提问:圆柱的高有多少条?他们之间有什么关系?

  使学生明白:圆柱的高有无数条,他们都相等。

  然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和高。

  3.圆柱的侧面展开图

  师:我们认识了圆柱体,老师这里有一个圆柱形的容器,你们想一下,这个容器是怎么做出来的呢?

  指导学生分析自己手中的模型,得出圆柱的侧面展开图。

  教师出示罐头盒,沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。

  教师:这个展开后的长方形它的长宽与圆柱体有什么关系呢?

数学第三单元《圆柱的表面积》教案5

  教材分析

  《圆柱的表面积》包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。

  例2是求圆柱的表面积。先说明圆柱的表面积的意义,在给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分,求表面积。例3是让学生运用求圆柱表面积的方法求出做一个没有盖的圆柱形铁皮水桶的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  学情分析

  本班学生动手能力不是很强,自主探究方法、方式较少。

  教学目标

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  教学重点和难点

  理解和掌握求圆柱表面积的计算方法。

  教学过程

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少*方米的铁皮?”

  (二)创设探究空间,主动发现新知

  1、 认识圆柱的表面

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

  师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了*行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、 把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展*是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X2+ 长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形 = 长 × 宽

  ↓ ↓ ↓

  圆柱的侧面积 = 底面周长 × 高

  (三)自主总结规律 验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 r h

  师:如果圆住展开是*行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (四)解决生活问题 深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于则面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  板书设计

  长方形 = 长 × 宽

  ↓ ↓ ↓

  圆柱的侧面积 = 底面周长 × 高


数学第三单元《圆柱的表面积》教案5篇扩展阅读


数学第三单元《圆柱的表面积》教案5篇(扩展1)

——《圆柱的表面积》数学教案5篇

《圆柱的表面积》数学教案1

  圆柱的表面积

  教学要求:

  1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的表面积,让学生认识取近似值的进一法。

  2、进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  3、培养学生的合作意识和主动探求知识的学习品质。

  教学重点:掌握圆柱表面积的计算方法。

  教学难点:能灵活运用相关知识解决实际问题。

  课前准备:

  1、教师准备一个圆柱体模型,表面的彩纸可揭开。

  2、准备一个自己上节课做的圆柱体。

  教学过程:

  教学步骤:

  教师活动过程

  学生活动过程

  一、复习引入

  1、口答下列问题,只列式不计算。

  2、导入新课.

  1、复习圆柱体的特征。

  1、求下列圆柱体的侧面积。

  (1)底面周长是18.84米、高是10米;

  (2)底面直径是2厘米、高是1厘米;

  (3)底面半径是0.5米、高是1.5米。

  2、教师出示圆柱体模型,如果我们在圆体表面贴上彩纸,边说边演示,怎样才能知道需要多少彩纸?根据学生回答,教师板书课题。

  1、学生回答

  2、学生讨论,然后汇报。

  二、教学新课

  1、 学习表面积的计算方法

  2、教学例2

  3、练习

  做出第6页第1题

  3、教学例3

  4、学习“进一法”

  1、学生拿出自己上节课做的圆柱体。

  2、思考:圆柱体的表面积包括哪几部分?

  3、根据学生的回答,教师依次把贴在圆柱体上的彩纸揭开,同时贴在黑板上。

  4、请学生说一说怎样计算圆柱体的表面积?

  圆柱体的表面积=侧面积+侧面积×2

  5、教师出示例2,提名板演,其余学生练习。

  6、指名两个板演,其余学生练习。

  7、教师提问:在日常生活中你看到的圆柱体是不是都包括两个底面和一个侧面?

  8、例3:一个没有盖的圆柱铁皮水桶,高是48厘米、底面直径是30厘米,做这个水桶至少要用铁皮多少*方厘米?(得数保留整百*方厘米数)

  着重让学生弄清“无盖”的含义,是求水桶的哪几个面的面积?

  9、教师着重说明为什么省略的十位上即使是4或比4小,也都要向前一位进1。

  1、学生细心观察自己做的圆柱体,然后讨论。

  2、学生交流汇报。

  2、 学生分组讨论,讨论后回答:①只有一个底面和一个侧面的;②两个底都没有,只有一个侧面。

  5、生讨论,然后独立完成。

  6、学生讨论。

  7、学生阅读书第5~6页有关内容。

  三、巩固练习

  1、完成书第6页做一做第2题。

  2、口答(只列式不计算)

  1、学生独立完成。

  2、压路机的前轮是圆柱体,长1.5米、底面周长3.14米,如果每分钟车轮滚20周,每分钟压过的路面是多少*方米?

  1、学生练习

  2、学生反馈

  四、课内总结

  五、课内作业

  1、课内作业:

  书第7页5~7题

  2、回家作业:

  书第7页第4题,第8题

《圆柱的表面积》数学教案2

  设计说明

  本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

  1.利用迁移、猜想,理解圆柱表面积的意义。

  新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

  2.利用演示、分析探究圆柱表面积的求法。

  直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

  3.联系实际,解决问题。

  在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

  课前准备

  教师准备PPT课件

  学生准备圆柱形实物

  教学过程

  ⊙复习导入

  1.铺垫。

  师:长方体的表面积指的是什么?(6个面的面积之和)

  师:怎样求长方体的表面积?

  预设

  生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

  生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

  2.迁移。

  (1)圆柱的表面积指的是什么?(三个面的面积之和)

  (2)怎样求圆柱的表面积?(生自由回答)

  3.导入。

  圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

  设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

  ⊙探究新知

  1.教学例3,探究计算圆柱表面积的方法。

  (1)理解圆柱表面积的意义。

  ①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

  ②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

  (2)探究圆柱表面积的求法。

  学生独立探究,然后汇报交流。

  ①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)

  用字母表示为s侧=ch。

  ②底面积=πr2。

  ③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为s表=ch+2πr2。

  2.教学例4,解决求圆柱表面积的实际问题。

  课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

  (1)学生读题,找一找这道题的所求问题。

  明确:求做这样一顶帽子至少要用多少*方厘米的面料,就是求圆柱的表面积。

  (2)想一想:怎样求这个圆柱的表面积呢?

  ①一顶帽子由几部分组成?

  (一个侧面+一个底面)

  ②明确解题思路及解法。

  先求帽子的侧面积:帽子的侧面积=πdh。

  再求帽顶的面积:帽顶的面积=πr2。

  最后求帽子的侧面积与帽顶的面积之和。

  师:解题时需要注意什么?

《圆柱的表面积》数学教案3

  教学目标

  1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

  2、使学生在数学学习活动中获得成功的体验,建立自信心。

  教学重点

  表面积的计算。

  教学难点

  侧面积的含义与计算方法。

  教学关键利用教具,弄清侧面积与圆的关系。

  教具准备圆柱侧面展开教具。

  教学方法操作法。

  教学过程

  旧知铺垫

  1、口算。

  3.1434100.5670.820

  2、长方体表面积。12㎝

  (1)长方体的表面积指的是什么?8㎝

  (2)怎样计算长方体的表面积?20㎝

  探索新知

  1、揭示并板书课题。

  2、教学例3。

  (1)你们知道圆柱体的表面积指的是什么吗?

  (说一说、摸一摸)

  (2)你们想应该怎样计算圆柱体的表面积?

  (学生说明、教师演示)

  板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

  (3)圆柱体的底面积和侧面积会计算吗?

  (学生说明、教师演示)

  板书推导过程。

  3、尝试练习。

  (1)求侧面积。

  a、C=2.5dm,h=0.6dm。

  b、d=8cm,h=12cm。

  (2)求表面积。

  a、S底=40c㎡,S侧=25c㎡。

  b、r=2dm,h=5dm。

  4、课堂小结。

  巩固练习完成练习2的第5、6题。

  布置作业完成练习2的第7、8题。

《圆柱的表面积》数学教案4

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长×宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的"反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体——圆柱体。(板书课题——圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在*面上滚动一周,痕迹是一条线段。如果把这个圆柱在*面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长×高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题“圆柱”后面接着写“的表面积”。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体*面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解①侧面积:2×3.14×5×15=471(*方厘米)

  ②底面积:3.14×52=78.5(*方厘米)

  ③表面积:471+78.5×2=628(*方厘米)

  答:它的表面积是628*方厘米。

  例3一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少*方厘米?(得数保留整百*方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  3.14×20×24=1507.2(*方厘米)

  (2)水桶的底面积

  3.14×(20÷2)2

  =3.14×102

  =3.14×100

  =314(*方厘米)

  (3)需要铁皮

  1507.2+314=1821.2≈1900(*方厘米)

  答:做这个水桶要用铁皮1900*方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少*方米?(只列式)

  (4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少*方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少*方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少*方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  提示:

  课堂教学设计说明

  本节课的教学设计分三个层次。

  第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

  第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

  首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转*面、形变量不变的辩证关系,培养同学们的观察分析能力。

  第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

《圆柱的表面积》数学教案5

  设计说明

  本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

  1.利用迁移、猜想,理解圆柱表面积的意义。

  新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

  2.利用演示、分析探究圆柱表面积的求法。

  直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

  3.联系实际,解决问题。

  在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

  课前准备

  教师准备 PPT课件

  学生准备 圆柱形实物

  教学过程

  ⊙复习导入

  1.铺垫。

  师:长方体的表面积指的是什么?(6个面的面积之和)

  师:怎样求长方体的表面积?

  预设

  生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

  生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

  2.迁移。

  (1)圆柱的表面积指的是什么?(三个面的面积之和)

  (2)怎样求圆柱的表面积?(生自由回答)

  3.导入。

  圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

  设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

  ⊙探究新知

  1.教学例3,探究计算圆柱表面积的方法。

  (1)理解圆柱表面积的意义。

  ①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

  ②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

  (2)探究圆柱表面积的求法。

  学生独立探究,然后汇报交流。

  ①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的"高)

  用字母表示为s侧=ch。

  ②底面积=πr2。

  ③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为s表=ch+2πr2。

  2.教学例4,解决求圆柱表面积的实际问题。

  课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

  (1)学生读题,找一找这道题的所求问题。

  明确:求做这样一顶帽子至少要用多少*方厘米的面料,就是求圆柱的表面积。

  (2)想一想:怎样求这个圆柱的表面积呢?

  ①一顶帽子由几部分组成?

  (一个侧面+一个底面)

  ②明确解题思路及解法。

  先求帽子的侧面积:帽子的侧面积=πdh。

  再求帽顶的面积:帽顶的面积=πr2。

  最后求帽子的侧面积与帽顶的面积之和。

  师:解题时需要注意什么?


数学第三单元《圆柱的表面积》教案5篇(扩展2)

——《圆柱的表面积》教案5篇

《圆柱的表面积》教案1

  教学目标

  1:理解圆柱体侧面积和表面积的含义。

  2:通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  3:体验成功与失败的收获,体会合作的愉悦

  教学重点:动手操作展开圆柱的侧面积

  教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  教具准备: 圆柱表面展开图

  学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。 教学过程

  一、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说) 师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:...........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:..........

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  二、探索交流,解决问题。

  导语:圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的*面呢?(指名说)

  提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐 有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

  (展开的形状可能是长方形、*行四边形、正方形等)

  1、独立操作 利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的.方式验证刚才的猜想。

  2.操作活动:(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3.小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。 (选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长 × 宽

  ↓ ↓↓

  圆柱的侧面积 =底面周长× 高

  所以,圆柱的侧面积=底面周长×高

  S 侧= C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 师:如果圆柱展开是*行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出*行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  练习

  求圆柱的侧面积(只列式不计算)

  1. 底面周长是1.6米,高是0.7米

  2. 底面直径是2分米,高是45分米

  3. 底面半径是3.2厘米,高是5分米

  研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

  4. 一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少*方厘米(学生独立完成后交流反馈)

  三,巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同? 多媒体出示:水管,水桶,糖盒

  提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少*方厘米?(得数保留整百*方厘米)

  重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百*方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

  3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少*方米?

  四.回顾整理,反思提升

  根据板书总结:本节课你收获了什么?老师希望同学们能够应用本节课所学知识制作出一个笔筒,送给你的好朋友,下课。

《圆柱的表面积》教案2

  教学目标

  知识与技能:

  1.能根据具体情境,灵活运用圆面积和长方形面积理解圆柱体的表面积。

  2.通过想象、动手操作等活动,理解圆柱侧面展开图是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3.探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  1.2过程与方法:

  讲解圆柱体表面积的过程中,培养学生初步的观察能力以及想象、概括能力。

  1.3情感态度与价值观:

  引导学生进一步体会立体图形的*面化,感受数学探索活动本身的乐趣,增强学好数学的信心。

  教学重难点

  教学重点:

  让同学们理解圆柱的表面积计算方法。

  教学难点:

  能够分清侧面积和表面积的区别,合理应用到日常生活中.

  教学工具

  课件、多媒体设备等

  教学过程

  一、情境导入

  师:同学们,在如常生活中我们经常会遇到一些圆柱体,比如我手里面拿的水杯,你们知道他有哪些东西组成的吗?

  生:同学们举手进行回答。

  师:这个水杯有哪些面组成呢?

  生:上底面、下底面、侧面

  师:多媒体出示动画

  师:我们可以看出它有三部分组成。

  师:现在想一下这三部分都是什么图形?

  生:上下底面(圆形),侧面(长方形)

  师:把这三个面积加起来,就是我们今天要学习的圆柱的表面积。

  生:举手口述连线答案。

  师:课件出示答案

  圆柱的侧面积=底面周长×高

  师:现在,我们来看一些数量关系:

  ①柱体上下底面面积相等;

  ②圆柱体侧面长=底面圆周长

  ③圆柱体侧面宽=圆柱体高

  二、探究新知

  (一)、侧面积

  师:我们现在来看看圆柱体的侧面积是怎样计算的。

  学生:举手发言

  在回答问题的过程中教师要用鼓励性的语言激发学生探求知识的能力。

  师:多媒体出示答案

  圆柱侧面积=长×宽=底面圆周长x高

  师:现在我们看看在实际应用中是如何计算的。(多媒体出示问题)

  1、已知圆柱体的底面圆半径为50px,高为125px,求一下这个圆柱体的侧面及时多少?

  生:举手回答

  师:多媒体出示答案

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20πcm?

  师:同学们要认真观察书写步骤。

  (二)、表面积

  师:现在我们来看看圆柱体的表面积是怎么计算的。

  生:举手回答问题

  师:多媒体出示答案

  圆柱表面积=侧面积+底面积=侧面积+上底面积+下底面积

  师:下面我们再来做一个练习吧!

  2、现在要制作一个底面半径为2dm,高为10dm的圆柱形铁桶,需要多少铁皮?

  师:同学们可以先算出侧面积和底面积,然后再算表面积。

  生:通过同学们互相竞争,增强了同学们学习数学的兴趣。

  解析:

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×10=40π

  底面圆面积=πr?=4π

  圆柱表面积=侧面积+2底面积=40π+2x4π=40π+8π=48π

  答:需要48πdm?铁皮

  三、巩固练习

  师:现在请大家看屏幕上面的这道题,能不能分小组解决问题。(课件出示题目)

  1、天气冷了,农村学生就要生火了,烟囱使用铁皮做的,一节烟囱长为20xxpx,烟囱的半径为100px,求制作这样的烟囱一节需要多少铁皮。

  师:要找出题目的关键,理清思路,细心解题。

  生:学生互相探讨交流,完成整个题目,培养学生独立思考的能力。

  解析:

  解:周长=2πr=2×4π=8π

  表面积=侧面积=8π×10=80π

  答:制作这样的烟囱一节需要80πcm?铁皮

  师:接下来,再看一个题目,这次也要分组进行,看看哪个组做得又快又好。(课件出示题目)

  2.现在要砌一个圆柱形的水窖,预计水窖深3米,水窖底的底面直径为1.5米,现在求一下整个水窖需要抹去多少*方米的混凝土。

  生:各小组在竞争中享受获取知识的乐趣。

  解析:周长=πd=1.5π

  表面积=侧面积+下底面积=1.5π×3+2.25π=6.75π

  答:整个水窖需要抹去6.75π*方米的混凝土

  师:现在大家独立完成下面的题目(出示题目)。

  3、已知一个圆柱体的表面积是15700px?,其中圆柱体的底面半径50px,求圆柱体的高。

  解:设圆柱体的高为h

  根据:表面积=侧面积+2底面积

  628=2×2πh+2×π2?

  628=4πh+8π

  628=4×3.14h+8×3.14

  20=4h+8

  h=4

  答:圆柱体的高4米

  7作业布置

  师:在作业本上面完成下面的2个题目。

  1、一个圆柱体,如果底面半径为5,圆柱体高为10,那么,求一下圆柱体的侧面积和表面积?

  解:周长=2πr=2×5π=10π

  侧面积=周长×高=10π×10=100π

  底面积=πr?=25π

  表面积=侧面积+2底面积=100π+2×25π=150π

  2、现在要给一个圆柱形的纸质品涂上颜色,现在知道该艺术品的底面圆半径为50px,圆柱体高为125px,请同学们求出圆柱体的表面积。

  解:周长=2πr=2×2π=4π

  侧面积=周长×高=4π×5=20π

  底面积=πr?=4π

  表面积=侧面积+2底面积=20π+4π=24π

  课后小结

  这堂课大家通过学习圆柱体的表面积,使同学们能用学过的知识去解决一些实际的图形面积问题。主要为了让同学们能够建立丰富的想象,把立体图形转化为*面图形的能力,在教学中涉及了学生互动,分组学习等教学模式,真正体现了学生的主体地位。让学生在课堂上动起来,寻找知识、体会知识,并通过练习提高学生的想象能力和抽象思维能力。

《圆柱的表面积》教案3

  一、教学内容

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  二、教学目标

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  三、教学重点:掌握圆柱侧面积和表面积的计算方法。

  四、教学难点:运用所学的知识解决简单的实际问题。

  五、教学准备:多媒体课件

  六、教学预设 :

  (一)、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40*方厘米,侧面积是25*方厘米

  (2)底面半径是2分米,高是5分米

  (二)、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

《圆柱的表面积》教案4

  教学目标:

  1.理解圆柱表面积的含义。

  2.掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。

  3.能灵活运用求表面积的有关知识解决一些简单的实际问题。

  教学重点:理解求圆柱的表面积的计算方法并能正确计算。

  教学难点:灵活运用表面积的有关知识解决实际问题。

  教学方法:探索发现,归纳总结,实际应用

  学法指导:小组合作,探究发现

  教学准备:

  课件

  圆柱模型

  教学过程:

  一、激情导思(5分)

  1、填空

  (1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。

  (2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。

  (3)圆柱的侧面积=

  2、求下面各圆柱的侧面积。(只列式,不计算)

  ①c=9.42厘米,h=5厘米。

  ②d=8米,h=3米。

  ③r=2分米,h=6分米。

  二、探究新知(15分)

  小组交流:

  1、圆柱的表面积怎么计算?

  2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?

  3、归纳总结:

  (1)s表面积=s侧面积+2s底面积

  (2)烟囱表面积=侧面积

  (3)水桶表面积=侧面积+一个底面积

  (4)油桶表面积=侧面积+两个底面积

  4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少*方分米的铁皮?

  (1)学生独立尝试解决

  (2)全班交流:

  油桶的侧面积:3.14×4×6=75.36(*方分米)

  油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(*方分米)

  油桶的表面积:75.36+25.12=100.48(*方分米)

  答:做这个油桶至少需要100.48*方分米的铁皮。

  三、课内练习:

  1、数学书33页第2题求表面积并填表

  2、计算下现各圆柱的表面积。(图中单位:厘米)

  四、拓展应用

  3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少*方米的铁皮?

  4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少*方米?

  5、数学书33页第6题

  四:总结:

  1、圆柱表面积的有关知识,在实际应用时要注意什么呢?

  应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。

  五、布置作业(8分)

  数学书33页第3、4、5题

  板书设计: 圆柱的表面积

  例2:油桶的侧面积:3.14×4×6=75.36(*方分米)

  油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(*方分米)

  油桶的表面积:75.36+25.12=100.48(*方分米)

  答:做这个油桶至少需要100.48*方分米的铁皮。

《圆柱的表面积》教案5

  教学目标:圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。

  教学重点:掌握表面积的计算方法

  教学难点:运用所学的知识解决简单的实际问题

  教具准备:圆柱的展开图

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征。

  2、圆柱的侧面积=底面周长高

  3、计算下面各圆柱的侧面积。

  (1)底面2.5周长米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)

  二、教学表面积。

  那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积+两个底面的面积

  1、教学例2。

  出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?

  (1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数

  据标在图上。现在我们把这个圆柱展开。出示展开图,如下:

  2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)

  3、出示试一试:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  (1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  (2)要计算做这个水桶需要多少铁皮,应该分哪几步?

  教师行间巡视,注意察看最后的得数是否计算正确。

  (3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百*方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  三、课堂小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习。

  练一练第1~4题。

  五、《作业本》第2页。


数学第三单元《圆柱的表面积》教案5篇(扩展3)

——数学《圆柱的表面积》教学设计5篇

数学《圆柱的表面积》教学设计1

  一、教学内容:

  九年义务教育六年制小学数学人教版第十二册第33—34页的内容。

  二、教学目标:

  知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。

  过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。

  情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。

  重点:理解并掌握求圆柱体表面积、侧面积的计算方法

  难点:能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。

  教具:圆柱形模型、剪刀

  三、教学过程

  (一)创设生活情景,引入新课

  我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?”这节课,我们就来一起学习圆柱的表面积(板书课题)(设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)

  (2)引导探究,学习新知

  1、认识圆柱的表面

  师:我们来做一个“饮料罐”,该怎样做?

  生:要做一个圆筒,和两个完全相同的圆。

  师:用什么形状的纸来做卷筒呢?同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗?每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了*行四边形,也有的得到了正方形。

  (设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)

  2、探究圆柱侧面积的计算。

  师:我们先来研究把圆筒剪开展*是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么? 学生观察、思考、议论。

  生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。

  生2:也就是求圆柱体的表面积。

  师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件?

  生3:我看只要知道圆的半径和高就可以了。

  师:我们来听听这位同学是怎么想的。

  生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。 生4:我觉得知道圆的直径和高也可以了。

  生5:我还觉得知道圆的周长和高也行。

  师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?

  生6:因为长方形面积=长×宽 所以圆柱的侧面积=底面周长×高

  师:如圆柱展开是*行四边形或正方形,是否也适用呢?学生分组动手操作,动笔验证,得出了同样的结论。

  小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为*面图形,圆柱的侧面展开后不论是长方形、正方形或*行四边形,圆柱的侧面积都等于它的底面周长乘高。

  师板书:圆柱侧面积=底面周长×高 S侧=ch 出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。

  (设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)

  3、探究圆柱表面积的计算

  师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢?

  (1) 出示例2

  分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。

  (设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)

  (2) 教学例3

  师:在实际生活中,求圆柱的表面积的计算方法有着广泛的应用,我们一起来看例3,应该算几个面?为什么? 学生做完后汇报

  师:通过计算,你有哪些收获?

  生5:我知道了,做这个无盖水桶要用铁皮多少*方厘米就是求一个侧面积和一个底面积的和。

  生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。

  (设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)

  (3)巩固练习,灵活运用

  1、出示牛奶罐、无盖水桶、水管等实物图,引导学生观察思考:计算制作这些物体所用铁皮的面积,各是求哪些面的总面积?

  小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。

  2、综合练习(只列式,不计算)

  (1)用铁皮制作圆柱形的通风管10节,每节长9分米,底面周长3.5分米,至少需要铁皮多少*方米?

  (2)砌一个圆柱形水池,底面直径2.5米,深3米,在池的周围与底面抹上水泥,抹水泥的面积是多少*方米?

  (3)一个圆柱形的油桶,底面半径4分米,高1米2分米,制这个油桶至少要用铁皮多少*方米?

  (设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)

  3、实践与应用

  小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。

  (设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)

  (4)全课小结 在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管—的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。

  板书

  圆柱的表面积

  圆柱的表面积=两个底面积+侧面积

  圆柱的侧面积=底面周长× 高

  长方形的面积= 长 × 宽

数学《圆柱的表面积》教学设计2

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体

  圆柱形物体、学具、多媒体课件

  教学重点

  圆柱侧面积的计算方法推导。

  准备

  课前布置学生用纸片试做一个圆柱体。

  教学过程:

  一、交流做圆柱体的情况。

  师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

  生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

  生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

  生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

  师:这说明什么呢?

  一生抢着说:“原来底面圆的周长等于长方形的长”。

  二、探索圆柱表面积的计算方法。

  (1)引入

  师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

  生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

  师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

  生:把圆柱剪开,变成我们学过的图形。

  师:下面分小组探索圆柱的表面积的计算方法。

  (2)小组汇报

  生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

  生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。

  师:还有不同方法吗?

  生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

  师:这样做的结果是一样的,有什么道理呢?

  (生陷入思考)

  师:从公式看2个底面圆跑到哪去了呢?

  一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

  师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

  师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

  生1:半径或直径和高。

  生2:有周长和高也行。

  生3:我发现已知周长和高,用第二种方法计算比较快。

  师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

  三、自学例3

  师:注意思考:

  (1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

  (2)什么叫“进一法”?什么情况下要运用进一法?

  生1:这个水桶只有一个底面,不能多算成2个。

  生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

  师:在一些用料问题上,我们要根据实际情况来考虑。

  四、 计算练习(出了3道题)

  由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

  反思:

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  (1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  (2)立足发展学生的能力,设计课堂教学的策略。

  (3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。

  在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

数学《圆柱的表面积》教学设计3

  一、教案背景

  “圆柱的表面积”是北师大版小学数学教材第十二册的内容,是在学生已有初步的几何概念,空间想象力的基础上进行教学的。教学目的在于通过教学活动,培养学生观察能力,勤于动脑,善于思考,培养以创新的思维解决开放性的问题,及合作学习的能力和对数学的学习兴趣。

  学生课前准备:

  (1)准备矿泉水瓶等一些圆柱形物品。

  (2)自带小剪刀和图画纸。

  二、教学课题

  圆柱体表面积的教学是本单元的第二个主题活动,其前知识基础应该是圆柱体的认识和长方体、正方体表面积的认识和计算。

  1、使学生理解圆柱体侧面积和表面积的含义。

  2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

  3、体验成功与失败的收获,体会合作的愉悦。

  三、教材分析

  《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等*面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的特点以后进行的内容。

  四、教学重点

  通过学生操作演示,推导出圆柱侧面积、表面积的计算公式

  五、教学难点

  使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系。教学之前用百度在网上搜索《圆柱的表面积》的相关教学材料,找了很多教案和材料作参考,了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用百度搜索关于圆柱的视频,课堂放给学生观看,加深印象。用百度图片网上搜索下载一些圆柱的图片,培养学生读图识别能力。通过百度在网上搜索一些关于圆柱的文字资料和图片资料,做成PPT课堂给同学们演示,生动直观、活泼有趣地学习本课。

  六、教学方法

  情境教学法、实践操作法、迁移类推法

  1、生用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?

  2、能用已有的知识计算它的面积吗?

  七、教学过程

  (一)创设情境,激趣导入

  【设计意图:本环节通过出示生活中一些圆柱体图片,创设情境,并通过师生对话交流,

  激起学生求知欲,让学生饶有兴趣的步入本节课的殿堂。】

  教师提问:认识这些物体吗?

  学生回答:圆柱体

  教师谈话:那我们本节课就再次走入圆柱的世界,去探索它的表面积。(板书课题)

  (二)自主探索,发现问题

  【设计意图:本环节将数学与实际生活密切联系在一起,利用百度视频—圆瓶贴标机,让学生感受到圆柱的侧面是哪一部分,并通过学生动手操作,从而让学生清楚的知道了圆柱侧面展开得到的图形,从而顺利的解决了重难点】

  圆柱的侧面积

  学生回答:(给圆柱形瓶子贴标签)

  教师提问:标签的面积应该是圆柱的什么面积呢?

  学生回答:侧面积

  教师谈话:那我们就一起用手中的实物瓶子来一起操作吧。

  1、用喜欢的方式,将个人的瓶子的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)

  (展开的形状可能是长方形、*行四边形、正方形等)

  独立操作后,与小组里的同学交流。

  2、能用已有的知识计算它的面积吗?

  先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。

  3、小组汇报。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。

  教师提问:这个长方形与圆柱体有什么关系?学生回答:长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。

  (课件展示)

  长方形的面积=圆柱的侧面积

  即长×宽=底面周长×高

  所以,圆柱的侧面积=底面周长×高

  S侧=C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  教师提问:如果圆柱展开是*行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  4、解决问题:

  10000瓶矿泉水,需要用多少*方米的包装纸呢?

  小组交流:只解决1个瓶子的包装纸的面积即可

  圆柱表面积

  1、教师提问:出示主题图:做一个圆柱形纸盒,需要多大面积的纸板?

  这一事件从数学角度看,是个怎样数学问题?

  学生回答:求圆柱表面积

  教师引导学生说一说圆柱体表面展开图是什么样的,教师再出示圆柱体展开图

  2、教师提问:圆柱体的表面积怎样求呢?

  学生得出结论:圆柱的表面积=圆柱的侧面积+底面积×2

  3、学生独立解答,汇报想法。

  (三)巩固练习,实际应用

  【设计意图:本环节则是让学生将新学到的知识与实际相结合,充分体现了“数学来源于生活,服务于生活”的思想,进而巩固新知。】

  一根圆柱底面直径是2米,高3米,表面积是多少?

  (四)回顾全课,加深印象

  【设计意图:本环节的设计是让学生通过自己谈收获,从而抓住本节课的学习重点,也梳理了知识的头绪。】

  (1)圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为()

  (2)要求一个圆柱的表面积,一般需要知道哪些条件()

  (五)开阔视野,课外延伸

  【设计意图:本环节我则利用了百度搜索的强大功能,寻找到所需要的习题,让学生走出书本的束缚,开阔了知识面,从而达到举一反三的目的。】

  出示课外习题

  板书设计:

  圆柱体的表面积

  圆柱的侧面积=底面周长×高→S侧=ch

  ↓↑↑

  长方形面积=长×宽

  圆柱的表面积=圆柱的侧面积+底面积×2

  八、教学反思

  本节课充分利用了百度搜索功能,并与教材有机的结合,突出了重点,解决了难点。教学中采用操作和演示、讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练相结合。

  1、把握重点,突破难点,合理利用教材

  对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

  2、直观演示和实际操作相结合

  通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。

  3、讲解与练习相结合

  本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

数学《圆柱的表面积》教学设计4

  教学内容:

  北师大版六年级数学下册圆柱的表面积。

  教学目的:

  1、理解什么是圆柱的表面积,知道怎样计算圆柱的表面积。

  2、能够利用学具动手操作、动脑思考推理圆柱的侧面积和表面积的计算公式。

  3、能够运用所学知识解决实际问题,知道数学知识应用于生活实际时应结合具体情境。

  4、培养动手操作、动脑思考的习惯和知识迁移的能力。教学重难点:圆柱侧面积计算公式的推理。

  教学准备:

  教师准备:长方体模型、多媒体课件。

  学生准备:圆柱形纸盒、剪刀。

  教学过程:

  一、创设情境,导入新课。教师出示长方体模型。

  提问:(1)长方体的表面积指什么?(六个面的面积之和)(2)如何计算长方体的表面积?(把六个面的面积加在一起)

  多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)

  教师:至少需要用多大面积的纸板?也就是要计算什么?(圆柱的表面积)圆柱的表面积指什么?(三个面的面积之和)

  如何计算圆柱的表面积?(把三个面的面积加在一起)

  教师:圆柱的表面积就是它的三个面的面积之和,要计算圆柱的表面积只需

  把三个面的面积加在一起,这节课我们就来研究圆柱的表面积。(板书课题:圆柱的表面积)

  (由长方体的表面积导入圆柱的表面积,知识的迁移自然,学生容易理解圆柱的表面积)

  二、自主探究,合作学习

  教师:你能试着计算这个圆柱的表面积吗?(学生试算,教师巡视)

  教师:我发现同学们都只计算了两个底面的面积,还有一个侧面的面积呢?(设置难题,激起学生的探究欲望)

  教师:我们知道圆柱的侧面是一个曲面,能不能想办法把它转化成我们学过的图形呢?你猜想圆柱的侧面展开会是什么图形?(学生猜想:长方形、正方形、*行四边形······)

  教师:你能想办法验证一下你的猜想吗?

  (一)圆柱的侧面展开

  1、学生利用课前准备的学具分组活动,教师巡视并参与学生活动。2、汇报质疑:学生到讲台上汇报展示圆柱的侧面展开图,教师多媒体演示。①圆柱的侧面展开后是长方形,我竖直把圆柱的侧面剪开得到一个长方形。

  ②圆柱的侧面展开后是*行四边形,我斜着把圆柱的侧面剪开得到一个*行四边形。

  ③圆柱的侧面展开后是长方形,因为我用一张长方形的纸卷成了一个圆柱。

  ④圆柱的侧面展开后是长方形,因为我把圆柱滚动一周发现圆柱侧面走过的是一个长方形。

  (动手操作,动脑思考,方法多样,为推理侧面积的计算公式打下基础。)(二)圆柱侧面展开图与圆柱的关系

  1、教师:同学们做的真是太好了,那你发现圆柱侧面展开图与圆柱有什么关系呢?请同学们观察、讨论一下。(学生观察、讨论,教师巡视并参与讨论)

  2、汇报质疑:学生到讲台上汇报展示,教师在黑板上画图演示。

  ①圆柱的底面周长

  ②圆柱的高

  (三)圆柱的侧面积计算公式的推导

  1、教师:你能根据长方形或*行四边形的面积计算方法得出圆柱的侧面积的计算方法吗?请同学们再观察、讨论。(学生观察、讨论,教师巡视并参与讨论)

  2、汇报质疑:学生汇报展示,教师板书演示。

  圆柱的底面周长

  长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  *行四边形的面积=底×高

  圆柱的底面周长

  圆柱的侧面积=底面周长×高

  教师:如果我们用S侧表示圆柱的侧面积,用C表示圆柱的底面周长,h表示圆柱的高,那么圆柱的侧面积计算公式应该是什么?(学生回答,教师板书)

  S侧=Ch

  汇报交流,质疑问难,计算表面积。

  1、多媒体出示:做一个圆柱形纸盒,至少需要用多大面积的纸板?(接口处不计,单位:厘米)

  30

  教师:现在同学们能计算这个圆柱的侧面积了吗?(学生计算,教师巡视指导,请学生板演)

  S侧=Ch=2×3、14×10×30=1884(*方厘米)

  2、教师:那么现在你能计算这个圆柱的表面积吗?(学生计算,教师巡视)汇报交流,总结算法,并请学生板演。侧面积:2×3.14×10×30=1884(*方厘米)底面积:3.14×102=314(*方厘米)表面积:1884+314×2=2512(*方厘米)3、教师:你能总结圆柱的表面积计算方法吗?圆柱的表面积=侧面积+底面积×2巩固练习,应用新知。计算下列圆柱的表面积。

  教师:你能运用学到的知识计算下列圆柱的表面积吗?下面三个圆柱有什么不同?

数学《圆柱的表面积》教学设计5

  教学课题:

  圆柱的侧面积。

  教材分析:

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成*面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

  教学目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

  2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

  教学重点:圆柱侧面积的计算。

  教学难点:圆柱体侧面积计算方法的推导。

  教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

  学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为*的方法推理发现侧面积的计算方法。

  教具准备:圆柱体教具、多媒体课件。

  学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:

  一、复习导入,引入新知

  1、复习圆柱体的特征

  师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

  二、课堂小结

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

  三、课后作业

  应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计

  圆柱的侧面积 =底面周长 ×高→S侧=ch

  长方形面积=长×宽

  教学反思

  这节课,我在学生的认知发展水*和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

  一、数学教学要注重数学思想和数学方法的渗透。

  在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为*面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

  二、重视学生的合作意识和实践能力的培养。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的*面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、*行四边形等*面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

  三、合理利用现代化教学手段辅助教学。

  侧面积计算公式的推导是本届的难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。


数学第三单元《圆柱的表面积》教案5篇(扩展4)

——《圆柱的表面积》教学设计10篇

《圆柱的表面积》教学设计1

  教学目标:

  1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。

  2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。

  3、进一步培养学生的动手操作能力,发展学生的空间观念。

  教学重点:

  圆柱体的表面积公式的推导。

  教学难点:

  圆柱体侧面积公式的推导

  教学过程:

  活动一:

  教师出示喝水用的杯子,提问是什么形状?

  进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?

  学生思考并提出数学问题。

  活动二:

  1、教学圆柱体表面积的意义

  教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?

  学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。

  教师板书课题。

  请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?

  概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积

  板书:侧面积 + 一个底面积×2 = 表面积

  2、引导学生探究圆柱体侧面展开图

  ⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?

  ⑵引导:想一想,能否将这个曲面转化成我们学过的*面图形?

  ⑶小组合作进行探究。

  ⑷小组汇报交流研究成果。

  3、探究圆柱体侧面积计算方法

  教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?

  在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长

  ×高。

  教师:你能求出做这个圆柱形杯子需要多少铁皮吗?

  学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的.表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。

  活动三:

  课件出示闯关题,让学生进行抢答。

  活动四:

  1、请同学谈收获

  2、教师小结:

  今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。

  活动五:

  布置作业:教科书五十页自主练习的第1题。

《圆柱的表面积》教学设计2

  一、设计理念

  新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动”

  二、教学策略

  1.创设生活情景,激励自主探索。

  2.创建探究空间,主动发现新知。

  3.自主总结规律,验证领悟新知。

  4.解决生活问题,深化所学新知。

  三、教材分析

  《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。

  四、教学目的:

  使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。

  五、教学难点:

  理解和掌握求圆柱表面积的计算方法。

  六、教具准备:

  圆柱表面积展开模型电脑课件

  学具准备:

  易拉罐、白纸壳、剪子

  七、教学过程

  (一)创设生活情景,激励自主探索

  在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少*方米的铁皮?”

  (评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。)

  (二)创设探究空间,主动发现新知

  1、认识圆柱的表面积

  师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做?

  生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。

  师:用什么形状的纸来做卷筒呢? (有的学生动手剪开模型)

  生:我知道了,圆筒是用长方形纸卷成的!

  师:各小组试试看,这位同学说的对吗?

  (其他小组也剪开模型,有的得到了长方形,有的得到了*行四边形,有的得到了正方形。)

  师:还有别的可能吗?如三角形、梯形。

  生:不能。如果是的话,就不是这种圆柱形的饮料罐了。

  (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。)

  2、把实际问题转化为数学问题

  师:我们先研究把圆筒剪开展*是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题?

  学生观察、思考、议。

  生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。

  生B:求饮料罐铁皮用料面积就是求:

  圆面积X 2 + 长方形面积

  生C:必须知道圆的半径、长方形的长和宽才能求面积。

  生D:我看只要知道圆的半径和高就可以求出用料面积。

  师:我们让这位同学谈谈他的想法。

  生D:长方形的长与圆的周长相等,长方形的宽与高相等。

  所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。

  师随着板书:长方形的面积 = 长 × 宽

  圆柱的侧面积 = 底面周长 × 高

  (三)自主总结规律,验证领悟新知

  让学生就顺利地导出了圆柱的侧面积计算方法: S = 2 πr h

  师:如果圆柱展开是*行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。)

  (四)解决生活问题,深化所学新知

  师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。

  生汇报。

  师:通过计算,你有哪些收获?

  生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。

  生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。

  (评析:教师让学生合作学习,自主发现问题,交流解决。)

  课件出示例四,读题明题意,学生试做,全班交流。

  课件出示第16页第七题,学生试做,全班交流。

  讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。

  八、板书设计

  S表面积=S侧+2S底

  =2πrh+2πr

《圆柱的表面积》教学设计3

  教学内容:《圆柱的表面积》是小学数学第十二册的教学内容。

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:圆柱形物体、学具、多媒体课件

  教学重点:圆柱侧面积的计算方法推导。

  准备:课前布置学生用纸片试做一个圆柱体。

  教学过程:

  一、交流做圆柱体的情况。

  师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

  生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

  生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

  生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

  师:这说明什么呢?

  一生抢着说:“原来底面圆的周长等于长方形的长”。

  二、探索圆柱表面积的计算方法。

  (1)引入

  师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

  生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

  师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

  生:把圆柱剪开,变成我们学过的图形。

  师:下面分小组探索圆柱的表面积的计算方法。

  (2)小组汇报

  生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

  生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2 。

  师:还有不同方法吗?

  生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

  师:这样做的结果是一样的,有什么道理呢?

  (生陷入思考)

  师:从公式看2个底面圆跑到哪去了呢?

  一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

  师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

  师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

  生1:半径或直径和高。

  生2:有周长和高也行。

  生3:我发现已知周长和高,用第二种方法计算比较快。

  师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

  三、自学例3

  师:注意思考:(1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

  (2)什么叫“进一法”?什么情况下要运用进一法?

  生1:这个水桶只有一个底面,不能多算成2个。

  生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

  师:在一些用料问题上,我们要根据实际情况来考虑。

  四、 计算练习(出了3道题)

  由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

  反思:

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的.训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  (1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  (2)立足发展学生的能力,设计课堂教学的策略。

  (3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。

  在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

《圆柱的表面积》教学设计4

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

  (二)核心能力

  运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

  (三)学习目标

  1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

  2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

  3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

  (四)学习重点

  圆柱表面积的计算

  (五)学习难点

  圆柱体侧面积计算方法的推导

  (六)配套资源

  实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

  二、学习设计

  (一)课前设计

  自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

  【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

  (二)课堂设计

  1.创设情境,引入新课

  师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

  师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

  今天我们就来一起研究圆柱的表面积。(板书课题)

  2.探究新知

  (1)认识表面积

  ①回忆旧知

  师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

  学生上台演示。

  小结:六个面的面积总和是长方体的表面积。

  师:正方体呢?

  学生自由发言。

  ②迁移类推新知

  师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

  学生操作后,自主发言。

  根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

  【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

  (2)探求表面积计算方法

  ①自主探索

  师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的*面图形?

  学生自由发言,

  师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

  以小组为单位进行操作活动。

  ②交流汇报

  各小组展示汇报,引导学生互相评价。

  预设1:沿高剪开

  预设2:沿斜线剪开

  预设3:随意剪开或撕开

  引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

  ③用字母表示

  师:怎么用字母表示呢?

  直接计算:S=Ch

  利用直径计算:S=πdh

  利用半径计算:S=2πrh

  ④归纳小结

  师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

  S表=S侧+2S底

  师:要求圆柱的表面积需要知道哪些条件?

  练一练:

  第21页的做一做。

  一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

  学生独立完成后汇报。

  师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

  引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

  【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】

  (3)举一反三,灵活应用

  出示例4:

  一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少*方厘米的面料?(得数保留整十数。)

  ①理解题意

  师:求多少面料就是求什么?

  师:“没有底”的帽子如果展开,它由哪几部分组成?

  小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

  ②独立完成

  学生独立完成后交流汇报。

  ③归纳小结

  师:通过计算这道题目,你有什么收获?

  引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

  【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】

  3.巩固练习

  (1)求下面圆柱的侧面积。

  ①底面周长是1.6m,高是0.7m。

  ②底面半径是3.2dm,高是5dm。

  (2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?

  4.课堂总结

  师:回顾本节的学习,你们有什么收获?

  引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。

  (三)课时作业

  1.利用工具量出你所需要的信息,计算你手中圆柱体的表面积。

  (1)测量的数据

  (2)计算过程及结果

《圆柱的表面积》教学设计5

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激*趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积(板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(*方厘米)

  侧面积:31.4×18.84=591.576(*方厘米)

  表面积:591.576+78.5×2=748.576(*方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(*方厘米)

  侧面积:31.4×18.84=591.576(*方厘米)

  表面积:591.576+28.26×2=648.096(*方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个()形,长是圆柱的(),宽是圆柱的(),因此圆柱的侧面积=()×()。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是()*方分米,它的底面积是()*方分米,它的表面积是()*方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的*台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

《圆柱的表面积》教学设计6

  教学内容

  《圆柱的表面积》是小学数学第十二册的教学内容。

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:圆柱形物体、学具、多媒体课件

  教学重点:圆柱侧面积的计算方法推导。

  准备:课前布置学生用纸片试做一个圆柱体。

  教学过程:

  一、交流做圆柱体的情况。

  师:昨天老师布置你们做一个圆柱体,做起来了吗?谁来介绍一下你是怎样做的。

  生1:我是先找一个圆柱体的茶叶罐,贴着底面剪了2个圆,然后再紧贴着侧面剪下了一个长方形,最后用透明胶粘起来。

  生2:我也先剪出两个一样大的圆,然后剪出一个长方形,开始怎么也做不出来,不是圆太大了就是太小了,后来不断修整,总算做起来。

  生3:我发现两个圆要一样大,长方形纸片的长与圆周长相等时很快就做起来。

  师:这说明什么呢?

  一生抢着说:“原来底面圆的周长等于长方形的长”。

  二、探索圆柱表面积的计算方法。

  (1)引入

  师:这节课我们要研究怎样计算圆柱的表面积。下面我们先来回顾一下圆的面积计算公式是怎样推导出来的?

  生:把圆切割拼成一个近似的长方形。(师用电脑演示过程)

  师:圆面积公式的推导方法,对圆柱的表面积公式推导有没有启示呢?你们打算怎么做?

  生:把圆柱剪开,变成我们学过的图形。

  师:下面分小组探索圆柱的表面积的计算方法。

  (2)小组汇报

  生1:我们小组把做的圆柱体展开后,发现圆柱体由2个相同的底面,和一个侧面组成。侧面展开是长方形,侧面积=底面周长×高。2个底面面积=兀r2×2。所以,圆柱表面积=底面周长×高+兀r2×2

  生2:我们小组同意他们的方法,我们还能用一个字母公式来表示:s圆柱=2兀r×h+兀r2×2。

  师:还有不同方法吗?

  生3:我的方法是,s圆柱=2兀r×(h+r)不知道行不行。我是从第2个同学公式中,运用乘法分配律转化过来的。

  师:这样做的结果是一样的,有什么道理呢?

  (生陷入思考)

  师:从公式看2个底面圆跑到哪去了呢?

  一个学生恍然大悟,激动地说我知道,转化成长方形了。大多数学生还没领悟过来,他马上到黑板画草图,在老师协助下完成。一画完教室里就响起了热烈的掌声。

  师:太不简单了,这种方法可以说是数学上的一项伟大发现。连书本上都没有,我要向更多的同学和老师介绍。

  师:现在我们有两种方法来计算圆柱的表面积,那么计算一个圆柱的表面积至少要知道什么条件呢?

  生1:半径或直径和高。

  生2:有周长和高也行。

  生3:我发现已知周长和高,用第二种方法计算比较快。

  师:在我们实际生活中有很多特殊情况,同学们要根据具体情况,灵活处理。

  三、自学例3

  师:注意思考:

  (1)这个圆柱形水桶,有什么不一样,计算时要注意什么?

  (2)什么叫“进一法”?什么情况下要运用进一法?

  生1:这个水桶只有一个底面,不能多算成2个。

  生2:“进一法”书上告诉我们,就是计算结果在求近似数时,没满4也要向前一位进一,就像昨天我们做圆柱体时,要留点“接头”用胶水粘,接头不能舍去。

  师:在一些用料问题上,我们要根据实际情况来考虑。

  四、计算练习(出了3道题)

  由于计算繁杂时间略显不足,正确率不高,不能全面反馈学生的掌握情况。

  反思:

  这节课虽留有许多缺憾,与传统的教学相比,做题少了些,在计算方面,没达到较多的训练,能影响到作业及今后考试的正确率,但我感到十分成功,我为学生课堂上的生命涌动而兴奋不已,主要有以下几点体会。

  一、教学目标提升了。过去我仅满足于把学生“教会”,学生始终是被动的接受。课堂上学生厌烦,老师急燥,都苦不堪言。在新课程理念指引下,我把促进学生的“发展”,做为我贯穿课堂始终的目标。充分调动学生的主动性,激发学生的探索欲望,学生由被动变为主动。不断体验到自己的智力成果带来的乐趣。

  二、学生在体验中,更好的理解了数学,不断闪现出创新的火花。课前,布置学生做圆柱体,我考虑到学生已有这方面的生活经验,并不难。但要做成一个标准的圆柱体,确实要动一定的脑筋。通过动手操作,学生其实已经初步感受到圆柱体,由2个相同的圆和一个长方形围成。更难能可贵的是一些学生在做中,发现圆柱底圆周长与长方形长相等。个别没做成功的孩子,在交流活动中,也能体验到失败的原因。促进空间观念的发展。

  三、我也体验到了怎么教数学。

  (1)只有深入理解课程标准,认真领会新课程理念,才能在实践过程中指导教学。

  (2)立足发展学生的能力,设计课堂教学的策略。

  (3)树立正确的教学观,不因考试而教学,教学应以开发学生智能为使命。

  四、不足改进。

  在进行计算圆柱表面积练习时,应大胆让学生运用计算器,提高课堂教学效率。过去总担心一旦用计算器会降低学生的计算能力,会影响今后的考试,计算器只教不用。这节课由于圆柱的表面积计算繁杂,占用较多时间且正确率不高,不能及时有效的反馈学生掌握的情况。所以应根据教学情况,让学生运用计算器来解决计算问题。

《圆柱的表面积》教学设计7

  教学目标:

  1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。

  2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。

  3、进一步培养学生的动手操作能力,发展学生的空间观念。

  教学重点:

  圆柱体的表面积公式的推导。

  教学难点:

  圆柱体侧面积公式的推导

  教学过程:

  活动一:

  教师出示喝水用的杯子,提问是什么形状?

  进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?

  学生思考并提出数学问题。

  活动二:

  1、教学圆柱体表面积的意义

  教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?

  学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。

  教师板书课题。

  请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?

  概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积

  板书:侧面积+一个底面积×2=表面积

  2、引导学生探究圆柱体侧面展开图

  ⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?

  ⑵引导:想一想,能否将这个曲面转化成我们学过的*面图形?

  ⑶小组合作进行探究。

  ⑷小组汇报交流研究成果。

  3、探究圆柱体侧面积计算方法

  教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?

  在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长×高。

  教师:你能求出做这个圆柱形杯子需要多少铁皮吗?

  学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。

  活动三:

  课件出示闯关题,让学生进行抢答。

  活动四:

  1、请同学谈收获

  2、教师小结:

  今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。

  活动五:

  布置作业:教科书五十页自主练习的第1题。

《圆柱的表面积》教学设计8

  预设目标:

  1、使学生理解和掌握圆柱体侧面积的计算方法,能正确计算圆柱的侧面积和表面积。

  2、培养学生的观察、操作、概括的能力以及利用知识合理灵活地分析、解决实际问题的能力。

  3、培养学生的合作意识和主动探求知识的学习品质。

  教学重、难点:

  1、理解和掌握圆柱体的侧面积和表面积的计算方法。

  2、培养学生科学的学习态度。

  教学过程:

  一、检查复习,引入新课。

  1、检查:拿出自制的圆柱,分别指出它的底面、侧面和高。

  2、复习:点名说说圆柱两底的关系,圆柱高的条数和关系以及侧面展开可能是什么样的图形。

  3、引入:两个底面和侧面合在一起就是圆柱的表面,这节课我们来学习圆柱的表面积。

  板书:圆柱的表面积

  二、引导探究,学习新知。

  1、侧面积的意义和计算方法。

  ⑴摸一摸自制圆柱体的侧面,谈一谈自己感觉到什么。

  ⑵想一想用我们已有的知识,能不能求出这个曲面的面积。(你能求出这个曲面的面积吗?)

  小组讨论:有什么好办法求出圆柱的侧积吗?

  ⑶剪一剪自制圆柱,汇报交流结果。

  ⑷说一说:圆柱体的侧面可转化为已学过的*面图形是什么?

  它的侧面积正好等于底面周长乘高的乘积。

  板书:圆柱的侧面积=底面周长×高

  ⑸算一算:求出圆柱的侧面积,同学自己自作,交流结果。

  小结:计算圆柱体的侧面积的方法是什么?

  ⑹做一做:

  课本76页例1及77页的第一题。

  2、表面积的意义及计算方法

  ⑴自读课本:什么是圆柱的表面积?

  板书:圆柱的表面积=侧面积+2个底面积

  ⑵练一练:(小黑板出示)

  ⑶小结:

  圆柱的侧面积等于底面积周长与高的乘积,圆柱的表面积等于两个底面积与侧面积的和,但在实际生活的应用中,有许多问题要根据实际情况,合理灵活地求出圆柱的表面积。

  三、巩固练习,灵活运用

  1、自学课本,书77页例3。

  ⑴分小组讨论;

  ⑵学生反馈。

  2、问:要知道圆柱形的物体的侧面积,要求哪些面的总面积?

  3、只列式不计算。

  小黑板出示题目。

  4、实践练习

  ⑴小组合作:测量并计算自制圆柱形实物的侧面积。

  ⑵讨论:要求出圆柱形的物体的侧面积,是求哪些面的总面积?需要知道哪些数据?怎样能测量这些数据?

  ⑶测量:测量所需的数据。

  ⑷计算:根据量得的数据。列出相应的算式并算出结果。

  四、课堂小结:

  说一说你今天学会了什么知识?

《圆柱的表面积》教学设计9

  教学目标:

  1、通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义。

  2、探索和掌握圆柱侧面积和表面积计算方法,并能解决生活中相应的实际问题。

  3、进一步培养学生的动手操作能力,发展学生的空间观念。

  教学重点:

  圆柱体的表面积公式的推导。

  教学难点:

  圆柱体侧面积公式的推导

  教学过程:

  活动一:

  教师出示喝水用的杯子,提问是什么形状?

  进一步告诉学生,这个杯子的底面直径是4厘米,高是10厘米米,你能提出什么数学问题?

  学生思考并提出数学问题。

  活动二:

  1、教学圆柱体表面积的意义

  教师:求“做一个这样的圆柱形杯子,至少需要多少纸铁皮”实际上是求什么?

  学生通过思考得出:求需要多少铁皮,也就是求圆柱体的表面积。

  教师板书课题。

  请同学们观察手中的圆柱体,想一想圆柱的表面积包括哪些面的总面积?

  概括:圆柱的两个底面面积加一个侧面面积就是圆柱体的表面积

  板书:侧面积 + 一个底面积×2 = 表面积

  2、引导学生探究圆柱体侧面展开图

  ⑴设疑:我们已经会求什么面的面积?还有什么面的面积不会求?

  ⑵引导:想一想,能否将这个曲面转化成我们学过的*面图形?

  ⑶小组合作进行探究。

  ⑷小组汇报交流研究成果。

  3、探究圆柱体侧面积计算方法

  教师:请各小组研究一下圆柱侧面展开得到的长方形的长和宽与圆柱的哪些部分有关系,有什么样的关系。想一想圆柱的侧面积应该如何计算?

  在学生交流、比较,完善,形成结论:圆柱的侧面积=底面周长

  ×高。

  教师:你能求出做这个圆柱形杯子需要多少铁皮吗?

  学生通过讨论明确解题思路:求需要多少铁皮,就是求这个圆柱的表面积。表面积=侧面积+底面积×2。然后尝试独立完成,并进行交流。

  活动三:

  课件出示闯关题,让学生进行抢答。

  活动四:

  1、请同学谈收获

  2、教师小结:

  今天同学们的表现让我感到很高兴:面对新的问题,不是等着老师讲解,而是自已想办法进行问题转化,用学过的知识去解决新问题,知道吗?这是一种很重要的思考方法,学习数学很需要这种知识迁移能力,希望在以后的学习中同学们继续发扬。

  活动五:

  布置作业:教科书五十页自主练习的第1题。

《圆柱的表面积》教学设计10

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第21~22页。例3、4教学圆柱表面积的概念,探求表面积的计算方法。学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。利用已有知识的迁移,联系长方体、正方体的表面积进行类比,认识圆柱的表面积,并在此基础上,引导学生自主探索出圆柱表面积的计算方法,体会转化、变中有不变的数学思想。

  (二)核心能力

  运用迁移类推的学习方法,通过想象、操作、讨论认识圆柱的表面积及表面积的计算方法,发展空间观念,体会转化、变中有不变等数学思想。

  (三)学习目标

  1.通过复习旧知,对长方体和正方体表面积知识进行迁移,并结合自己制作的圆柱模型,理解圆柱表面积的含义。

  2.利用自制的圆柱,通过想象、操作、讨论等活动,自主探求出圆柱的侧面积和表面积的计算方法,在对比中理清二者的区别,经历知识形成的过程,发展空间观念,并体会转化、变中有不变等数学思想。

  3.利用所学知识解决圆柱表面积的相关实际问题,在解决问题的过程中,体会圆柱的广泛应用。

  (四)学习重点

  圆柱表面积的计算

  (五)学习难点

  圆柱体侧面积计算方法的推导

  (六)配套资源

  实施资源:《圆柱的表面积》名师课件、长方体、正方体、圆柱学具

  二、学习设计

  (一)课前设计

  自己准备一个长方体、正方体,并分别测量出相关的数据,计算出它们的表面积。

  【设计意图:唤起对学生已有经验的回顾,为新知识的学习作铺垫。】

  (二)课堂设计

  1.创设情境,引入新课

  师:昨天我们认识了一位新朋友—圆柱,谁能向大家介绍一下你的这位新朋友。(生说各种特征)

  师:生活中有很多物体都是圆柱形的,我们很有必要进一步认识圆柱。关于圆柱你还想知道些什么?

  今天我们就来一起研究圆柱的表面积。(板书课题)

  2.探究新知

  (1)认识表面积

  ①回忆旧知

  师:我们学过正方体和长方体的表面积(出示一个长方体)谁来摸一摸这个长方体的表面积,怎么求它的表面积?

  学生上台演示。

  小结:六个面的面积总和是长方体的表面积。

  师:正方体呢?

  学生自由发言。

  ②迁移类推新知

  师:观察自己手中的圆柱模型,摸一摸、想一想并指出圆柱的表面积,怎样求圆柱的表面积?

  学生操作后,自主发言。

  根据学生发言板书:圆柱的表面积=圆柱的两个底面面积+圆柱的侧面积

  【设计意图:学生已经学过长方体、正方体表面积的计算,因此对圆柱表面积概念的理解并不困难。所以利用已有知识的迁移,联系长方体、正方体的表面积进行类比,学生独立总结出圆柱的表面积定义。考查目标1。】

  (2)探求表面积计算方法

  ①自主探索

  师:两个底面是圆形,我们早就会求它的面积,而它的侧面是一个曲面,曲面的面积我们没有学过怎么办?想一想,能否将这个曲面转化成我们学过的*面图形?

  学生自由发言,

  师:因为我们已经知道圆柱的展开图,大家一致认为要把侧面展开,来计算它的侧面积。下面请四人一组对照手中的圆柱体学具进行操作,并讨论推导出圆柱侧面面积的计算方法。

  以小组为单位进行操作活动。

  ②交流汇报

  各小组展示汇报,引导学生互相评价。

  预设1:沿高剪开

  预设2:沿斜线剪开

  预设3:随意剪开或撕开

  引导小结(PPT演示并板书):无论我们将侧面展成什么样的不规则图形,最后都通过剪拼,得到一个长方形。长方形的面积等于圆柱的侧面积,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于长×宽,所以圆柱的侧面积等于底面周长×高。

  ③用字母表示

  师:怎么用字母表示呢?

  直接计算:S=Ch

  利用直径计算:S=πdh

  利用半径计算:S=2πrh

  ④归纳小结

  师:圆柱的侧面积问题解决了,圆柱的表面积问题也就迎刃而解了,我们一起用字母表示圆柱的表面积吧。

  S表=S侧+2S底

  师:要求圆柱的表面积需要知道哪些条件?

  练一练:

  第21页的做一做。

  一个圆柱形茶叶筒的侧面贴着商标,圆柱底面半径是5cm,高是20cm。这张商标纸的面积是多少?

  学生独立完成后汇报。

  师:通过计算,你发现圆柱的表面积和侧面积有什么不同?

  引导小结:侧面积是表面积的一部分,表面积还包含两个底面积。

  【设计意图:学生已经知道圆柱的展开图,所以此环节让学生根据已经有知识经验,先进行自主操作探究,经历求侧面积的过程,加深理解并形成空间观念,然后归纳出表面积的计算方法,最后进行侧面积与表面积的对比,进步加深二者的区别和联系。考查目标1、2、3.】

  (3)举一反三,灵活应用

  出示例4:

  一顶圆柱形厨师帽,高30cm,帽顶直径20cm,做这样一顶帽子至少要用多少*方厘米的面料?(得数保留整十数。)

  ①理解题意

  师:求多少面料就是求什么?

  师:“没有底”的帽子如果展开,它由哪几部分组成?

  小结:“没有底”的帽子的展开图,它是由一个底面和一个侧面组成。

  ②独立完成

  学生独立完成后交流汇报。

  ③归纳小结

  师:通过计算这道题目,你有什么收获?

  引导小结:根据具体情况,确定求哪些面的面积之和。实际使用的面料要比计算的结果多一些,所以这类问题往往用“进一法”取近似数。

  【设计意图:例4是圆柱表面积的实际应用,现实生活中有关表面积计算的情形复杂多变,所以在解决此例题时,要培养学生养成认真审题的习惯,在学生理解题意后,独立解决,最后回顾反思,总结出解决此类问题要注意的事项。考查目标3.】

  3.巩固练习

  (1)求下面圆柱的侧面积。

  ①底面周长是1.6m,高是0.7m。

  ②底面半径是3.2dm,高是5dm。

  (2)小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要多少彩纸?

  4.课堂总结

  师:回顾本节的学习,你们有什么收获?

  引导小结:认识了圆柱的表面积,并利用转化的思想推导出了圆柱的表面积怎样计算,并利用它来解决生活中的一些问题。

  (三)课时作业

  1.利用工具量出你所需要的信息,计算你手中圆柱体的`表面积。

  (1)测量的数据

  (2)计算过程及结果


数学第三单元《圆柱的表面积》教案5篇(扩展5)

——小学六年级数学教案《圆柱的表面积》10篇

小学六年级数学教案《圆柱的表面积》1

  【教材分析】

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  【学生分析】

  学生的学习水*有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的*面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

  【教学目标】

  1、掌握圆柱侧面积和表面积的概念。

  2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

  3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

  4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

  【教学重点】掌握圆柱的侧面积和表面积的计算方法。

  【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

  【教具准备】圆柱体纸盒、多媒体课件。

  【学具准备】圆柱形纸盒。

  【教学过程】

  一、引入新课

  1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

  2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

  3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

  4、这节课我们就一起来研究“圆柱的表面积”这个问题。

  二、探究新知

  1、初步感知

  (1)请同学们观察圆柱,想一想什么是圆柱的表面积。

  总结:圆柱所有面面积的总和就是圆柱的表面积。

  (2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

  (3)圆柱的表面积怎么求?(两个底面积+侧面积)

  (4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

  2、侧面积

  (1)小组合作:

  请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

  (2)学生汇报

  (3)教师总结演示。

  (4)推导圆柱侧面积公式

  圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

  3、表面积

  (1)总结表面积公式

  怎么求圆柱的表面积?

  圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

  (2)共同解决课前提出的问题:要制作这个盒子至少需要多少*分米的包装纸?

  侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2)

  三、巩固练习

  1、现在我们自己尝试来算一算这两个圆柱的表面积。

  过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

  2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

  4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少*方米?

  5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

  四、总结收获

  同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

  请记住同学们善意的提醒,这节课就上到这!

  五、板书设计

  圆柱的表面积

  侧面积=底面周长×高

  圆柱表面积=S侧=C×h=2πrhS表=2πrh+2πr2

  底面积×2=2πr2

小学六年级数学教案《圆柱的表面积》2

  一、学习目标:

  1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

  2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

  二、学习重点:

  掌握圆柱侧面积和表面积的计算方法。

  三、学习难点:

  运用所学的知识解决简单的实际问题。

  四、学习过程:

  (一)、旧知复习

  1、圆柱有几个面?分别是、和。

  2、底面是形,它的面积=。

  3、侧面是一个曲面,沿着它的高剪开,展开后得到一个形。它的长等于圆柱的,宽等于圆柱的。

  4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

  (二)列式为

  1、圆柱的侧面积

  (1)圆柱的侧面积指的是什么?

  (2)圆柱的侧面积的计算方法:

  圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积=,所以圆柱的侧面积=。

  (3)侧面积的`练习

  求下面各圆柱的侧面积。

  ①底面周长是1.6m,高0.7m。②底面半径是3.2dm,高5dm。

  小结:要计算圆柱的侧面积,必须知道圆柱的和这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  2、圆柱的表面积

  (1)圆柱的表面是由和组成。

  (2)圆柱的表面积的计算方法:

  圆柱的表面积=

  (3)圆柱的表面积练习题

  一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十*方厘米)

  分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。

  列式计算:

  ①帽子的侧面积=

  ②帽顶的面积=

  ③这顶帽子需要用面料=

  小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

  3、巩固练习

  一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

  4、总结:通过这节课的学习,你掌握了什么知识?

  圆柱的侧面积

  圆柱的表面积

  五、教学结束:

  布置学生课下复习本节课内容。

小学六年级数学教案《圆柱的表面积》3

  教学内容:

  教材第25~26页“练习与应用”第7~11题、“探索与实践”12~14题、评价与反思。

  教学目标:

  1、使学生进—步掌握圆柱、圆锥体积计算方法,沟通已经学过的一些形体体积计算之间的联系。

  2、培养学生综合运用知识和解决简单实际问题的能力。

  教学重点:

  沟通已经学过的一些形体体积计算之间的联系。

  教学难点:

  综合运用知识和解决简单实际问题。

  教学过程:

  一、揭示课题

  我们已经复习了圆柱的表面积、圆柱和圆锥体积的计算。这节课继续复习这方面的知识,特别是表面积、体积计算知识的实际应用。(板书课题)通过复习,使学生进一步掌握表面积、体积的汁算方法,提高应用知识的能力。

  二、复习体积计算

  1、复习公式。

  提问:长方体、正方体的体积怎样计算?(板书时出示相应图形)为什么正方体体积等于边长a的立方?圆柱体积计算公式是怎样的?这个公式怎样得到的?圆锥的体积公式是怎样的?为什么要乘以?

  2、做复习第7题。

  让学生在练习本上独立计算。

  三、知识应用复习

  我们掌握了这些基础知识,可以解决生产、生活中的一些实际问题。

  1、做练习四第8题。

  引导学生把新知与旧知有机结合起来进行比较。

  2、做练习四第9题。

  结合画图演示水流的速度就是圆柱的高,每分钟的高在每秒的基础上乘以60。

  3、做练习四第10题。

  提问:用这堆沙子去填长方体的沙坑哪一个量是相等的?(体积)接着学生计算。

  4、做练习四第11题。

  出示题目:

  结合题目和图形理解长方体纸箱的长、宽、高与每个圆柱体饮料罐相相关数据的关系。接下来学生自主完成。(教师要注意后进生的辅导)

  5、做练习四第12题。

  可以先举例说明,再概括。

  6、做练习四第13题。

  提问:要求圆柱体饮料罐的容积需要测量哪些数据?(要注意从它的里面测量)

  通过计算再与商标纸上标出的容积比一比,你发现什么?加强学生把数学与生活有效结合起来。

  7、做练习四第14题。

  先让学生动手操作,再交流。

  8、评价与反思:结合3个方面让学生自主评价。

  9、让学生了解“你知道吗?”

  四、课堂小结

  通过这节课复习,你进一步明确了哪些知识?

  五、课堂作业基础训练

小学六年级数学教案《圆柱的表面积》4

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体圆柱体。(板书课题圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在*面上滚动一周,痕迹是一条线段。如果把这个圆柱在*面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题圆柱后面接着写的表面积。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体*面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2 计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解 ①侧面积:23.14515=471(*方厘米)

  ②底面积:3.1452=78.5(*方厘米)

  ③表面积:471+78.52=628(*方厘米)

  答:它的表面积是628*方厘米。

  例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少*方厘米?(得数保留整百*方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  3.142024=1507.2(*方厘米)

  (2)水桶的底面积

  3.14(202)2

  =3.14102

  =3.14100

  =314(*方厘米)

  (3)需要铁皮

  1507.2+314=1821.21900(*方厘米)

  答:做这个水桶要用铁皮1900*方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少*方米?(只列式)

  (4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少*方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少*方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少*方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  提示:

  课堂教学设计说明

  本节课的教学设计分三个层次。

  第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

  第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

  首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转*面、形变量不变的辩证关系,培养同学们的观察分析能力。

  第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

小学六年级数学教案《圆柱的表面积》5

  【教学内容】

  圆柱的表面积(1)(教材第21页例3)。

  【教学目标】

  1、理解圆柱的表面积的意义。

  2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

  【重点难点】

  1、掌握圆柱的侧面积和表面积的"计算方法。

  2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

  【教学准备】

  多媒体课件和圆柱体模型。

  【复习导入】

  1、复习引入。

  指名学生说出圆柱的特征。

  2、口头回答下面的问题。

  (1)一个圆形花池,直径是5m,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽。

  【新课讲授】

  1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

  师:圆柱的侧面展开是一个什么图形?

  生:长方形。

  师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

  师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

  教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

  2、教学例3。

  (1)圆柱的表面积的含义。

  教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

  通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

  (2)计算圆柱的表面积。

  ①师:圆柱的表面展开后是什么样的?

  组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

  ②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

  (3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

  答案:628cm2

  【课堂作业】

  完成教材第23页练习四的第2~6题。

  第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

  第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

  第5题,对于有困难或争议大的,可用实物或模型直观演示。

  第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

  答案:

  第2题:3、14×1、2×2=7、536(m2)

  第3题:3、14×1、5×2、5=11、775(m2)

  第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

  第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

  【课堂小结】

  通过这节课的学习,你有哪些收获?

  【课后作业】

  完成练习册中本课时的练习。

  第2课时圆柱的表面积(1)

小学六年级数学教案《圆柱的表面积》6

  设计说明

  1.在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2.在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3.在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备 多媒体课件

  学生准备 纸质圆柱形物体 剪刀 长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1.说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2.想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3.汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4.交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

小学六年级数学教案《圆柱的表面积》7

  一、教学内容

  P13-14页例3、例4,完成“做一做”及练习二的部分习题。

  二、教学目标

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。

  三、教学重点:掌握圆柱侧面积和表面积的计算方法。

  四、教学难点:运用所学的知识解决简单的实际问题。

  五、教学准备:多媒体课件

  六、教学预设 :

  (一)、自学反馈

  1、求下面各圆柱的侧面积

  (1)底面周长2.5分米,高0.6分米

  (2)底面直径8厘米,高12厘米

  2、求下面各圆柱的表面积

  (1)底面积是40*方厘米,侧面积是25*方厘米

  (2)底面半径是2分米,高是5分米

  (二)、关键点拨

  1、圆柱的侧面积。

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

小学六年级数学教案《圆柱的表面积》8

  教学目标:

  1、培养学生认真仔细地好习惯。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  3、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  教学重点:

  运用所学的知识解决简单的实际问题。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学准备:小黑板

  教学过程:

  一、复习:

  1、圆柱的侧面积怎么求?

  (圆柱的侧面积=底面周长×高)

  2、圆柱的表面积怎么求?

  (圆柱的表面积=圆柱的侧面积+底面积×2)

  3、练习四第1题:

  根据已知条件求出圆柱的侧面积和表面积。

  (第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)

  二、实际应用:

  1、练习四第6题:

  (1)复习长方体、正方体的表面积公式:

  长方体的表面积=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  (2)学生独立完成第6题:

  计算长方体、正方体、圆柱体的表面积,并指名板演。

  2、练习四第7题:

  (1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

  (2)学生独立完成这道题,集体订正。

  3、练习四第9题:

  (1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

  (2)指名板演,其他学生独立完成于课堂练习本上。

  4、练习二第13题:

  (1)学生读题理解题意后尝试独立解题。

  (2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

  5、 第11题:

  (1)学生小组讨论:可以漆色的面有哪些?

  (2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

  (3)提醒学生将计算结果化成以*方米为单位的数,并可根据实际情况保留近似数。

小学六年级数学教案《圆柱的表面积》9

  教学内容

  教材33页、34页例1、例2、例3及做一做,练习七第2-5题。

  素质教育目标

  (一)知识教学点

  1.理解圆柱的侧面积和表面积的含义。

  2.掌握圆柱侧面积和表面积的计算方法。

  3.会正确计算圆柱的侧面积和表面积。

  (二)能力训练点

  能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

  教学重点

  理解求表面积、侧面积的计算方法,并能正确进行计算。

  教学难点

  能灵活运用表面积、侧面积的有关知识解决实际问题。

  教具学具准备

  1.教师、学生每人用硬纸做一个圆柱体模型。

  2.投影片。

  教学步骤

  一、铺垫孕伏

  1.口答下列各题(只列式不计算)。

  (1)圆的半径是5厘米,周长是多少?面积是多少?

  (2)圆的直径是3分米,周长是多少?面积是多少?

  2.长方形的面积计算公式是什么?

  3.教师出示圆柱体模型,指同学说出它有什么特征?

  二、探究新知

  1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

  (1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

  (2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

  2.教学例1

  (1)出示例1,指同学读题,找出已知条件和所求问题。

  学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

  板书:3.14×0.5×1.8

  =1.75×1.8

  ≈2.83(*方米)

  答:它的侧面积约是2.83*方米。

  (2)反馈练习:完成做一做41页第1题。

  学生独立解答,然后订正。

  3.教学圆柱的表面积

  (1)教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。

  (2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

  4.教学例2

  (1)投影片出示例题2、圆柱的几何图形和表面积的展图。

  (2)指同学读题,找出已知条件和所求问题。

  (3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

  (4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

  教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

  做完后订正,订正时让学生说出有关的计算公式。

  (5)反馈练习:完成做一做第2题。

  指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

  5.教学例3

  (1)出示例3,指名读题,找出已知条件和所求问题。

  (2)教师提示:解答这道题应注意什么?

  启发学生说出:这道题是求做这个水桶要用铁皮多少*方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

  (3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800*方厘米的让该生上黑板上做。

  (4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

  (5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百*方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900*方厘米。

  (6)“四舍五入”法与“进一法”有什么不同。

  通过比较,使学生明白:“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。而进一法也是看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

  6.阅读课本33页、34页。

  三、巩固发展

  1.完成练习七第2题。

  指两名学生板演,教师巡视指导,然后订正。

  2.完成练习七第3题的前两题。

  学生在练习本上做,教师巡视指导,然后订正。

  3.完成练习七第5题。

  (1)每组一个茶叶筒,学生分组进行测量。

  (2)教师巡视,指导学生测量的方法。

  (3)学生独立解答。(让学生分别计算出有盖的和无盖的茶叶筒的表面积)然后订正。

  四、全课小结

  教师:这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。(教师板书课题:圆柱的表面积)圆柱的表面积在实际应用时要注意什么呢?

  教师引导学生归纳出:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求一个侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

  五、布置作业练习七第3题的第3小题、第4题。

  课后反思:本课时的教学通过师生的共同参与,让学生体验了数学的探索性和挑战性。

小学六年级数学教案《圆柱的表面积》10

  设计说明

  本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

  1.利用迁移、猜想,理解圆柱表面积的意义。

  新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

  2.利用演示、分析探究圆柱表面积的求法。

  直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

  3.联系实际,解决问题。

  在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

  课前准备

  教师准备 PPT课件

  学生准备 圆柱形实物

  教学过程

  ⊙复习导入

  1.铺垫。

  师:长方体的表面积指的是什么?(6个面的面积之和)

  师:怎样求长方体的表面积?

  预设

  生1:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

  生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

  2.迁移。

  (1)圆柱的表面积指的是什么?(三个面的面积之和)

  (2)怎样求圆柱的表面积?(生自由回答)

  3.导入。

  圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

  设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

  ⊙探究新知

  1.教学例3,探究计算圆柱表面积的方法。

  (1)理解圆柱表面积的意义。

  ①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

  ②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

  (2)探究圆柱表面积的求法。

  学生独立探究,然后汇报交流。

  ①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)

  用字母表示为S侧=Ch。

  ②底面积=πr2。

  ③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为S表=Ch+2πr2。

  2.教学例4,解决求圆柱表面积的实际问题。

  课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

  (1)学生读题,找一找这道题的所求问题。

  明确:求做这样一顶帽子至少要用多少*方厘米的面料,就是求圆柱的表面积。

  (2)想一想:怎样求这个圆柱的表面积呢?

  ①一顶帽子由几部分组成?

  (一个侧面+一个底面)

  ②明确解题思路及解法。

  先求帽子的侧面积:帽子的侧面积=πdh。

  再求帽顶的面积:帽顶的面积=πr2。

  最后求帽子的侧面积与帽顶的面积之和。

  师:解题时需要注意什么?


数学第三单元《圆柱的表面积》教案5篇(扩展6)

——《圆柱的表面积》数学教学反思5篇

《圆柱的表面积》数学教学反思1

  为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:

  一、打破传统教学,灵活合理地重组教材

  “圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。

  二、充分发挥教师主导与学生主体作用的统一。

  本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。

  1、直观演示与实际操作结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的*面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。

  2、教师讲解与学生练习相结合

  教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的数据,合理自然地计算出圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。

  三、较好地培养了学生的创新意识

  1、培养了学生的合作创新意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。

  2、培养了学生的实践能力。

  本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。

  四、较好地利用现代化的教学手段。

  本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系

  五、课后拓展、知识设计联系实际。

  安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。

  当然,在这节课的教学中,还存在着一些不足:

  一、我整节课的板书安排不够合理,书写有些潦草!

  二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。

  三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

《圆柱的表面积》数学教学反思2

  本节课的教学主要让学生明确圆柱体表面积的计算方法,并能够在练习中灵用公式进行计算。针对本课的教学设计,主要做到以下几点:

  1、把握重点,突破难点,合理利用教材。

  对于圆柱体侧面面积计算公式的推导,严格遵循学生主体性原则,让学生在动于操作、观察发现中促进知识的迁移,让学生轻松地理解掌握圆柱侧面面积的计算方法,以此来较好地突破难点。

  2、直观演示和实际操作相结合,通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。

  3、讲解与练习相结合。

  本节课,改变了传统的先讲后练的教学模式,使讲、练结合贯穿教学的始终,让练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进了“进一法”的教学,使讲、练真正做到了有机结合,使学生学习的知识是有效的、实用的,同时也能激发学生学习数学和运用知识解决实际问题的兴趣,培养学生的应用意识。

《圆柱的表面积》数学教学反思3

  圆柱体的表面积计算是一个难点。本堂课中学生虽然很明确的知道求圆柱体的表面积是求两个底面积和一个侧面积的面积和。但在实施过程中有一定的困难,有写同学是因为对其中的公式或意义没有真正理解。不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,列式计算时漏洞百出,甚至还有一部分同学因为计算又导致前功尽弃。

  接触到一些实际问题的时候,由于学生的生活经验和社会经验都比较浅薄,从而对一物体的认识不够,不能完全准确的来判断求的物体是几个面,分别是哪几个面,还有实际中求表面积时采用的近似法椰油一定的不理解,需要通过反复练习才能达到一定的程度。

  圆柱的侧面积和表面积:

  沿着圆柱的一条母线把圆柱剪开后展开,圆柱的侧面就由曲面转化为*面,展开图是一个矩形,矩形的长等于圆柱底面的周长c,矩形的宽等于圆柱的*。这个矩形的面积就是圆柱的侧面积。由此可知,圆柱的侧面积等于底面的周长乘以高,即

  S圆柱侧=ch=2πrh(r为圆柱底面的半径),圆柱的侧面积与两个底面圆面积的和,就是圆柱的表面积(也叫全面积)。即S圆柱表=S圆柱侧+2S底=2πrh+2πr2。

  教学时,要把圆柱的侧面积和表面积区别开来。可用纸板做成圆柱模型,然后将侧面展开,导出计算圆柱侧面积和表面积的方法,并先概括成文字公式,再过渡到字母公式。

  学生计算烟囱、水管、无盖桶、封闭桶罐等用料面积时,容易多算或少算底面积,灵活运用公式比较困难。可以多观察实物、模型,增加感性认识。也可以给出一些计算式子,要学生说明是求圆柱体的哪几个面的面积。例如:S=2πrh,是求( );S= 2πrh+πr2,是求( ); S=2πrh+2πr2,是求( )。

  《圆柱的侧面积和表面积》教学片段:

  在以往教学长方体、正方体的表面积时,常常为学生在学习表面积后的变式练习中,怎么都弄不清油桶、游泳池、粉刷教室到底缺哪个面而头疼。

  我想,关于圆柱的表面积也会存在这样的问题吧。为了防患于未然,我想,是不是在新课的教学中就为这些情况作了一些铺垫呢?因此,在教学这一课时,我先引导学生复习了圆柱体的特征,然后设计了如下问题:

  1、求铅笔涂漆部分的面积是求( )的面积。

  2、压路机滚动一周压过多大路面是求( )的面积。

  3、求一个水桶用多少材料是求( )的面积。

  4、求汽油桶用多少铁皮是求( )的面积。

《圆柱的表面积》数学教学反思4

  为了能充体现新课程理念,促进学生的发展,教学过程中我精心安排了观察、操作、讨论交流、应用等教学活动,同时积极营造愉快、民主、轻松、和谐的学习氛围。反思整堂课程教学主要围绕以下几点展开:

  一、打破传统教学,灵活合理地重组教材

  “圆柱的表面积”这部分数学内容包括:圆柱的侧面积、表面积的计算、表面积在实际计算中的应用。教材安排了一道生活例题,分步教学。备课时,我打破了传统的教学程序,将这些内容重新组合,合理把握教材,力争有效的完成教学任务。首先将侧面积计算方法的推导作为教学难点来突破:后将表面积的计算作为了重点来教学;将表面积的实际应用作为重点来练习。三者有机结合、相互联系、多而不乱。教学设计和安排既源于教材,又不同与教材。例题并没有专门的教学,但其指导思想和目的要求分别在教学过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了课堂教学效率。

  二、充分发挥教师主导与学生主体作用的统一。

  本节课在教学上采用了引导—合作—引导的方法,通过教师的“导”,鼓励学生积极、主动地探求新知。

  1、直观演示与实际操作结合

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱体表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的*面图形,从中思考和发现它的侧面积该怎样计算呢?在我的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最终发现圆柱的侧面展开图有多种形式,而不是单纯的照本宣科,沿高线展开;另外实践中使所有图形进而转化为长方形。实现教材的回归,最后探究出侧面积的计算方法。

  2、教师讲解与学生练习相结合

  教学过程中,我改变了传统的先讲后练的教学模式,做到讲练结合惯穿始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。具体做法是:在学生理解圆柱的侧面积的公式后,安排学生强化训练:紧接着又复习圆面积公式,训练计算圆柱的底面积,利用计算所得的数据,合理自然地计算出圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了实际生活问题的引导教学。使学生学得轻松,练得有趣。

  三、较好地培养了学生的创新意识

  1、培养了学生的合作创新意识。

  在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面积转化为长方形这一思路,而是放手学生合作探究,鼓励学生猜想和实验,最终学生通过动手、观察和思考,探讨出了侧面积计算方法。在组织学生合作学习中,较好地培养了学生的创新意识。

  2、培养了学生的实践能力。

  本节课我大胆给予学生自主探索的时间与空间,让学生动手测量、动手实践,使学生处于学习主体的地位,充分发挥每一个学生的潜能,让学生在合作学习中不仅达到学以致用的目的,而且培养了实践能力。

  四、较好地利用现代化的教学手段。

  本节课合理地利用了多媒体教学技术。在讲练过程中,动态课件演示,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的`先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的罐头盒、笔桶、圆柱立柱等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系

  五、课后拓展、知识设计联系实际。

  安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。设计题目的计量单位有所不同。课后习题层次加深,始终以培养学生审题习惯及应用能力的提高为主线。

  当然,在这节课的教学中,还存在着一些不足:

  一、我整节课的板书安排不够合理,书写有些潦草!

  二、实践操作时间安排有些急。在动手探索圆柱侧面积的计算方法时,大部分学生操作慢,展示推导的过程有些短促,导致个别学困生只能听听而已。

  三、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

《圆柱的表面积》数学教学反思5

  《圆柱的表面积》是北师大版六年级下册第一单元的圆柱与圆锥之圆柱表面积第一课时,这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。在此前的学习中,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等*面图形的性质及计算方法。通过剪一剪的活动来探索圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。学生自己准备的圆柱,沿高展开后还可能得到正方形,这是一种特殊现象。学生自己得出了与书上不一样的结果,觉得很兴奋。趁着学生发现探索的积极性,让学生思考还可以将圆柱的侧面怎样展开。有的说横着从中间剪一刀,立刻有人反对说那还是两个圆柱。横剪不行,竖剪过了,还能怎么剪?同学们犯起了愁。在一阵思考之后有人冒出一句:斜剪!展开之后是什么图形?有人猜是三角形,有人说是梯形,有人说*行四边形,带着种种可能同学们又开始拿出另一个准备好的圆柱,然后沿着斜线剪开,*行四边形展现在同学们面前。紧接着用长方形的面积推导侧面积公式,长方形的长是圆柱的底面周长 ,宽是圆柱的高。得出圆柱的侧面积等于底面周长乘高。通过圆柱侧面展开图的深入研究,同学们打开了探索、创新的思维,知道了学习不能只停留在书面的内容,应深入探讨,多方面多角度思考,要知其然,更要知其所以然。

  实践也使我们体会到,创建生活课堂应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的*台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。学生在动手、动脑、动口的操作过程,实际上就是一种积极有效的意义建构过程。在这个不断的操作、观察、体验的过程中,学生都在思考,都在感悟。体验的越丰富,对概念的感悟也就越深刻。圆柱侧面计算方法和表面积计算方法都是学生在操作、体验中获得的。


数学第三单元《圆柱的表面积》教案5篇(扩展7)

——六年级数学《圆柱的表面积》教案5篇

六年级数学《圆柱的表面积》教案1

  教学目标

  1.认识掌握圆柱各部分名称,建立圆柱体空间概念;

  2.掌握圆柱体侧面积、表面积的计算方法,并能具体应用。

  教学重点和难点

  1.教学重点:推导圆柱体侧面积的计算方法。

  2.教学难点:圆柱体侧面积公式的推导过程。

  教学过程设计

  (一)复习准备

  师:我们已经学习了不少几何图形。现在看老师手里拿的是什么图形?

  生:长方形。

  师把长方形贴在黑板上。

  师:面积如何求?

  生:长方形面积=长宽。(师板书)

  师又拿出正方形,问相同的问题,然后把这个正方形贴在长方形旁边。再拿出圆形。

  师:圆的面积和周长公式是什么?给什么条件能求出圆的面积和周长?

  然后把圆形贴在长方形上面。再出一些练习题进行圆面积和周长的计算。强调计量单位。

  师又拿出长方体、正方体。当拿出圆柱体时,同学们都能回答是圆柱体。接着让他们举一些日常生活中经常见到的圆柱形物体。再让他们拿出自己事先准备的圆柱体(如果提出似是而非的问题时,先不要进行讨论。)这时老师也拿出一些实物:手电筒里的反光罩、罐头盒、小鼓、印章、烟囱的半个拐脖,问这些实物叫不叫圆柱体?为什么不叫圆柱体?

  师:今天我们就来学习一种新的形体圆柱体。(板书课题圆柱)

  (二)学习新课

  1.圆柱体的认识。

  师:现在找一个同学到前面摸一摸圆柱体有哪几个面。(指名上前摸。)

  生:上、下两个面和周围一个面。

  师:上、下两个面是什么形状?它们的面积大小怎样?

  生:上、下两个面是圆形,面积相等。

  师:我们把圆柱上、下两个面叫做底面。(板书:底面)

  师:周围的这个面是个曲面。我们把周围的这个面叫做侧面。(板书:侧面)

  师:我们把一个圆在*面上滚动一周,痕迹是一条线段。如果把这个圆柱在*面上滚动一周,它的侧面留下的痕迹将是一个什么形状?同学们可以自己用手中的学具动手滚一下,能体会出是一个什么形状?

  生:是一个长方形。

  师演示:将圆柱体侧面展开得到一个长方形。(与黑板贴的长方形一样大。)

  师接着拿出两个高矮不一样的圆柱体。

  师问:为什么有高有矮呢?由什么决定的?

  生:由高决定的。

  师:什么是圆柱的高呢?(板书:高。写在长方形宽处。)看看书上是怎么讲的。(看书第50页,找同学回答。)老师在圆柱侧面上画一条垂直于底面的线段,这条线段就是这个圆柱的高。

  师出示投影,让学生指出高。

  师:圆柱的高有多少条?

  生:无数条。

  师:高都相等吗?

  生:都相等。

  师:现在我们来回答刚才举的一些物体不是圆柱体的原因。(先让同学们说自己手中的,最好让本人说,然后再说老师手中的实物。)

  师:我们讲的圆柱体都是直圆柱。

  2.圆柱的侧面积。

  (1)推导公式。

  师:圆柱侧面图是一个长方形。下面同学们四人一组对照手中的圆柱体学具进行讨论。

  讨论题目是:

  a:这个长方形与圆柱体有哪些关系?

  b:你能推导出圆柱体侧面积计算方法吗?

  然后学生汇报讨论结果。

  生:这个长方形的长等于圆柱体的底面周长,宽等于圆柱的高,长方形面积等于圆柱的侧面积。从而得出;圆柱体侧面积=底面周长高。用字母公式表示为:S侧=Ch。

  老师板书公式。

  (2)利用公式计算。

  例1 一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

  老师在黑板上板演。

  下面同学们进行练习。投影练习题:

  ①一圆柱底面半径是5厘米,高5厘米,求侧面积。

  ②一圆柱底面半径是2分米,高是直径的2倍,求它的侧面积。

  ③一圆柱底面周长是12厘米,高12厘米,求它的侧面积。

  师:你能知道第③题圆柱侧面展开图是什么图形吗?

  3.圆柱的表面积。

  师在课题圆柱后面接着写的表面积。

  (1)推导公式。

  师:同学们已经学会求圆柱的侧面积。如果求这个圆柱的表面积,你会求吗?(老师同时演示圆柱体*面展开图,让同学们进行讨论。)

  生汇报讨论结果,老师板书公式:

  S表=S侧+2S圆

  (2)利用公式计算。

  (投影出示)

  例2 计算圆柱体的表面积(见下图)。(单位:厘米)

  同学说思路,老师板书,注意每一步结果写计量单位。

  解 ①侧面积:23.14515=471(*方厘米)

  ②底面积:3.1452=78.5(*方厘米)

  ③表面积:471+78.52=628(*方厘米)

  答:它的表面积是628*方厘米。

  例3 一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米。做这个水桶要用铁皮多少*方厘米?(得数保留整百*方厘米。)

  同学说思路,列式。老师把正确的解答用投影打出来。

  (1)水桶的侧面积

  3.142024=1507.2(*方厘米)

  (2)水桶的底面积

  3.14(202)2

  =3.14102

  =3.14100

  =314(*方厘米)

  (3)需要铁皮

  1507.2+314=1821.21900(*方厘米)

  答:做这个水桶要用铁皮1900*方厘米。

  小结:今天我们学习了哪些知识?(指名回答)下面我们来检查一下,这节课谁学习得最好?

  (三)巩固反馈

  (1)看书第54页第1题。

  (2)投影,指出下面圆柱体的高是几?

  (3)有一节直径10厘米的烟囱,长3米。这节烟囱用铁皮多少*方米?(只列式)

  (4)一种轧道机,后轮直径1.32米,长1.27米。如果后轮每分钟转动6周,每分钟可轧路面多少*方米?(只列式)

  (5)做一对无盖水桶,要求底面半径15厘米,高4分米。至少需用铁皮多少*方分米?(结果保留一位小数。)

  (6)一种圆柱形小油漆桶,底面周长50.24厘米,高20厘米。每个桶用铁皮多少*方分米?(四人讨论后口头回答。)

  学生做,老师巡视,找几个同学把题写在玻璃片上,然后全体订正。

  思考题:

  (1)你要做一个圆柱体,先确定什么条件?你是怎样做的?

  (2)我们在学习圆面积时,用两个完全一样的圆拼成一个近似长方形的方法推导出圆面积的公式,你能用这种方法推导出求圆柱体的表面积的另外一种计算方法吗?并用此方法做第(6)题,比较哪种方法简便?

  提示:

  课堂教学设计说明

  本节课的教学设计分三个层次。

  第一层次,使学生认识圆柱体底面、侧面和高。通过让学生观察实物和教具,以及插图和自己举日常生活中的"实例,并让学生亲自动手摸一摸、看一看,使学生能准确地掌握圆柱体的特征。

  第二层次,推导圆柱体的侧面积计算公式和表面积计算方法。

  首先让学生讨论圆柱侧面展开的这个长方形与圆柱之间的关系。老师用圆柱体在黑板上贴有长方形处滚动一周,使学生了解到这个长方形的长就是底面周长,长方形的宽就是这个圆柱的高,从而用已学过的长方形面积公式很自然地推导出求圆柱体的侧面积公式。在这个基础上再加上两个圆面积,引导学生理解圆柱表面积的意义,从而总结出求圆柱的表面积的计算方法。使学生认识到立体转*面、形变量不变的辩证关系,培养同学们的观察分析能力。

  第三层次是针对本节课所学知识设计的一些联系实际的应用题。安排有:只有侧面的圆柱形;只有一个底面的圆柱形;两个底面都有的圆柱形。同时计量单位有所不同。这样培养学生认真审题的好习惯,提高学生灵活应用能力,有利于发展学生的空间概念。

六年级数学《圆柱的表面积》教案2

  教学目标:

  1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  教学重点:

  运用所学的知识解决简单的实际问题。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

  2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

  3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)

  二、实际应用

  1、练习二第13题

  (1)复习长方体、正方体的表面积公式:

  长方体的表面积=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  (2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

  2、练习二第7题

  (1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)

  (2)学生独立完成这道题,集体订正。

  3、练习二第9题

  (1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

  (2)指名板演,其他学生独立完成于课堂练习本上。

  4、练习二第16题

  (1)学生读题理解题意后尝试独立解题。

  (2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。

  5、练习二第19题

  (1)学生小组讨论:可以漆色的面有哪些?

  (2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

  (3)提醒学生将计算结果化成以*方米为单位的数,并可根据实际情况保留近似数。

  三、布置作业

  练习二第8、10、15、17、18及20题完成在作业本上。

  板书: 圆柱的侧面积=底面周长×高

  圆柱的表面积=圆柱的侧面积+底面积×2

  长方体的表面积=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  教学反思:

六年级数学《圆柱的表面积》教案3

  教学目标:圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。

  教学重点:掌握表面积的计算方法

  教学难点:运用所学的知识解决简单的实际问题

  教具准备:圆柱的展开图

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征。

  2、圆柱的侧面积=底面周长高

  3、计算下面各圆柱的侧面积。

  (1)底面2.5周长米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)

  二、教学表面积。

  那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积+两个底面的面积

  1、教学例2。

  出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?

  (1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数

  据标在图上。现在我们把这个圆柱展开。出示展开图,如下:

  2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)

  3、出示试一试:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  (1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  (2)要计算做这个水桶需要多少铁皮,应该分哪几步?

  教师行间巡视,注意察看最后的得数是否计算正确。

  (3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百*方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  三、课堂小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习。

  练一练第1~4题。

  五、《作业本》第2页。

六年级数学《圆柱的表面积》教案4

  【教学内容】

  圆柱的表面积(1)(教材第21页例3)。

  【教学目标】

  1、理解圆柱的表面积的意义。

  2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

  【重点难点】

  1、掌握圆柱的侧面积和表面积的计算方法。

  2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

  【教学准备】

  多媒体课件和圆柱体模型。

  【复习导入】

  1、复习引入。

  指名学生说出圆柱的特征。

  2、口头回答下面的问题。

  (1)一个圆形花池,直径是5m,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽。

  【新课讲授】

  1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

  师:圆柱的侧面展开是一个什么图形?

  生:长方形。

  师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

  师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

  教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

  2、教学例3。

  (1)圆柱的表面积的含义。

  教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

  通过讨论、交流使学生明确:圆柱的表面积是指圆柱的侧面和两个底面的面积之和。

  (2)计算圆柱的表面积。

  ①师:圆柱的表面展开后是什么样的?

  组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

  ②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

  (3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

  答案:628cm2

  【课堂作业】

  完成教材第23页练习四的第2~6题。

  第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

  第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

  第5题,对于有困难或争议大的,可用实物或模型直观演示。

  第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

  答案:

  第2题:3、14×1、2×2=7、536(m2)

  第3题:3、14×1、5×2、5=11、775(m2)

  第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

  第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

  【课堂小结】

  通过这节课的学习,你有哪些收获?

  【课后作业】

  完成练习册中本课时的练习。

  第2课时圆柱的表面积(1)

六年级数学《圆柱的表面积》教案5

  教材内容:23-24页

  教学目标:

  1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。

  2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。

  教学重难点:

  通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的能力,发展学生的空间观念。

  教学具准备:

  与练习六中的练习相关的图片。

  教学过程:

  一、复习引入

  1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的表面积?其中圆柱的底面积怎么算?侧面积呢?

  2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

  二、基本练习

  1、出示练习六第3题,理解表格意思。

  2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后交流方法和得数。

  三、综合练习

  1、完成练习六第4题。

  ⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

  ⑵各自练习后交流算法。

  2、完成练习六第5题。

  ⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

  ⑵各自练习后交流算法和结果。

  3、讨论练习六第7题。

  ⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

  ⑵看看,这个博士帽是怎么做成的",包括哪几个部分?

  ⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

  你能算出,做一顶这样的博士帽需要多少*方分米的黑色卡纸?

  ⑷各自计算,算后交流算法和结果。

  ⑸如果要做10顶呢?怎么算?

  3、讨论练习六第8题。

  ⑴出示题目,让学生读题,理解题目意思。

  ⑵讨论:塑料花分布在这个花柱的哪几个面上?

  要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

  算出上面和侧面的面积后,怎么算?为什么?

  4、讨论解答练习六第9题。

  ⑴出示题目,读题,理解题目意思。

  ⑵尝试列式。

  ⑶交流算法:

  这题先算什么?再算什么?最后算什么?

  怎么算一根柱子的侧面积的?为什么不要算底面积?

  四、全课

  五、作业:练习六6、7、8、9题。


数学第三单元《圆柱的表面积》教案5篇(扩展8)

——《圆柱的表面积》说课稿 (菁选5篇)

《圆柱的表面积》说课稿1

  一、教材分析:

  圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。

  二、教学目标:

  根据《数学课程标准》的理念学生的学习目标应将知识与技能、过程与方法、情感态度与价值观这三方面融为一体,为了落实这几点,本节课我们的教学目标制定如下:

  1、知识与技能。

  通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。

  2、过程与方法。

  学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  3、情感态度与价值观

  让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。

  三、教学重点与难点:

  圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础。所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。

  由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。

  四、教学目标:

  为了更好的突出重点突破难点并遵循学生为主体,教师为主导的教学原则,要按照学生从感性认识到理性认识、从特殊到一般的认识规律,遵循启发式引导学生展开思维、探究证明思路、循序渐进的教学方法,最大限度提高学生的参与率。这样的教学方法主要是让学生主动、自觉地学习,让他们在学习中学会学习,这实际上式交给了学生自由飞翔的翅膀,交给了他们点石成金的金指头。

  五、学习方法:

  在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设*等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到人人学有价值的数学这个目的。

  六、教学过程:

  在我们的.课堂教学中我们应以学生的发展为本,以学生的活动为主线,让学生充分的参与到课堂活动中来,为了落实这几点,我按以下四个阶段完成本课。

  (一)温故而引新,巧妙入境。

  这个过程我展示3个方面的复习内容:

  (1)我知道圆柱的特征是

  (2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。

  (3)你知道长方形的面积怎样计算吗?

  以上设计让学生逐题完成,通过个人汇报集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。

  (二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题。

  在此我用富有激励性的语言来引导学生:

  请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识。)

  你知道圆柱的表面积指的是什么吗?(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题。)

  这就是我们今天研究的主题《圆柱的表面积》。

  这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究兴趣。

  (三)动手操作,合作研究,汇报交流,发现联系,总结方法。

  1、动手操作。

  你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看。

  让学生自己动手进行尝试,教师进行巡视、引导和点拨,通过学生动手将圆柱的侧面展开成*面图形的过程(比如让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,或用大卷的塑料胶带做演示),来感受化曲为直的思想,获得直观的感受。

  2、合作研究。

  如果沿着圆柱的一条高把圆柱的侧面展开,会得到什么图形呢?请你和你的同伴说说看。

  3、汇报交流。

  让学生把自己的展开结果展示给大家看。

  4、进行推理,总结方法。

  引导学生通过测量圆柱底面周长和侧面展开后得到的长方形的长或用彩色笔做记号的方法,让学生自己分析出圆柱的底面周长和侧面展开成的长方形的长之间的关系。然后引导学生进行概括总结:你知道长方形的面积怎样计算吗?那么圆柱的侧面积又是怎样计算的呢?

  因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:底面周长乘高,也就是圆的周长乘高。学生概括出公式以后让学生写下来,并读一读,用黑板展示出来。然后让学生思考:要求圆柱的侧面积需要知道哪些条件呢?

  引出例1:已知一个圆柱的底面直径是0.5m,高是1.8m,求它的侧面积。(得数保留两位小数)

  5、归纳新知。

  你现在知道怎样求圆柱的表面积了吗?先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功

  通过独立思考同伴交流全班汇报总结公式来完成。(这一环节,使学生动手、动口、动脑等多种感官参与活动,做到了在动手操作中发现,在合作中学习,在交流中成长,这样能够更好的突破难点。)完成后让学生动手根据自己探究的结果完成例2、

  6、联系生活,巩固练习,培养能力。

  这一环节是巩固内化空间基础知识,培养拓展空间思维,形成学生对空间的感受能力,学习关于空间几何一些简单知识点的重要环节。因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,使学生能够把所学的知识运用于解决生活中的实际问题中。让他们感受到数学与生活的紧密联系数学来源于生活又作用于生活。这一过程我安排了课本上例3.让学生学会用数学知识解决生活中的实际问题,同时让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算,讲解进一法的意义和使用范围。

  (四)全课总结,促进构建。

  这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的。

  这一环节的目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。

《圆柱的表面积》说课稿2

  一、说教材

  1、教材的内容、地位和作用及学生的学习基础情况。

  《圆柱与圆锥》这一教学内容是小学阶段数学《空间与图形》领域中最后一个单元的知识。教材之所以这样安排,是因为在此之前,学生已经认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等*面图形的特点,学习了这些图形的面积计算,学生还认识了长方体、正方体,掌握了长(正)方体表面积与体积的含义及其计算方法,这些都是学生学习圆柱和圆锥的基础。而《圆柱的表面积》这个内容又是《圆柱和圆锥》这个单元中的一个知识点,它是学生在学习了《面的旋转》了解了点、线、面、体之间的关系和认识了圆柱和圆锥及其基本特征后安排的一个具有探索性的内容,让学生通过想象、操作等探索活动运用迁移规律把圆柱体的侧面积、表面积的计算方法这一新知识转化到学生原有的认知结构中,即圆的面积和长方形、正方形的面积计算。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。

  2、《空间与图形》这一知识的教学是培养学生抽象概括能力、思维能力和建立空间观念的重要途径。它是人们更好地认识和描述生活空间进行交流的重要工具,教材十分注重把学生的视野拓宽到自己生活的空间,注重以现实世界中有关空间与图形的问题作为学习素材,使学生经历用观察、操作、想象、思考等多种方式探索图形的性质、运动、位置、度量等,并能够运用所学的知识解决生活中的实际问题。因此结合《圆柱的表面积》这一知识的特点,我将本课的教学目标拟定如下:

  (1)知识教学:

  ①通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。

  ②结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  (2)能力训练:能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。

  (3)素质培养:培养学生的探索精神和合作能力,养成良好的数学学习习惯。

  圆柱体的侧面积和表面积在本课教材中占重要地位,它们是学习其它几何知识的基础,所以本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。由于圆柱体的侧面积计算较为抽象,加之学生的空间想象力不够丰富,所以本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。

  二、说教法

  本课由于圆柱侧面积和表面积的概念比较抽象,学生很难理解,探索的可操作性难把握。为了化解本课的重难点,让学生轻松愉快地学习,积极主动的进行探索,结合学生的特点,我把这节课的教学设计为:“以学生动手操作活动为主体,以探索学习和合作交流为主线,以教师的引导点拨为副线,发挥学生的创新能力为主旨”。即以教师的引导带动学生进行动手操作活动,辅之以小组合作交流法、直观演示法、讨论法等,同时采用多媒体课件演示为教学辅助手段,充分调动学生的眼、耳、口、手、脑等各种感官活动全面、全程的参与教学的每一个环节,培养学生的观察力、动手操作能力和想象力以及概括能力,发展学生的空间观念,总结出圆柱的侧面积、表面积的计算方法。然后根据新课程的教学理念,使数学知识与学生的生活实际紧密联系起来:运用圆柱的侧面积和表面积的计算方法解决一些生活中的简单实际问题,在解决问题的过程中加以强化,这样让学生把所学的数学知识及时运用到生活中去。

  三、说学法

  在本课的学习活动中注重培养学生的空间观念、想象力、动手操作能力、探索能力和推理概括能力。所以学生的学法以教师设计的多媒体演示为依托,以学生自备的圆柱形纸盒、长方形纸、剪刀等学具为载体,在老师的引导下进行学习活动。学习活动以小组共同探索、交流讨论、合作学习为主要形式,教师适时进行点拨,创设*等、自主、和谐的教学环境,通过学生的动手操作、观察、比较、推理、概括等充分调动学生多种感官的参与,让学生全面参与新知的发生、发展和形成过程,并学会操作、观察、比较、分析和概括,学会想象,学会与人交往。在活动中获得成功的体验,从而培养学生学习数学的兴趣,得到“人人学有价值的数学”这个目的。

  四、说教学程序

  为了完成本课的教学目标,体现合作学习的有效性,突出《空间与图形》这个内容的教学特点,我精心设计了以下几个教学过程:

  (一)温故而引新巧妙入境

  这个过程我用课件展示4个方面的复习内容:(1)我知道圆柱的特征是……(2)圆的周长怎样计算?圆的面积又是怎样计算的呢?说一说,并用字母表示出来。(3)你知道长方形的面积怎样计算吗?(4)我会列式计算解决问题(两个小题:一是计算圆的周长,一是计算圆的面积。)

  以上设计让学生逐题完成,通过个人汇报——集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法,这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,让学生体验到新知识与旧知识之间的联系,充分体现数学知识的前后连贯性。

  (二)设置悬念,创设探究情境,激发学生的探究欲望,引出本课的探究主题

  在此我用激励性的语言引导学生:“同学们,你想当设计师吗?”“请你拿出自己准备的圆柱形纸盒,这是我给大家准备的一个模型,现在我请大家帮助我设计一个和你手中的模型一样的圆柱形纸盒,你能告诉我你需要多大面积的纸吗?”(让学生沉思一会儿后请学生起来汇报,发表自己的意见,根据学生的回答,慢慢引导学生理解这实际上是求圆柱的表面积,然后引导学生分别说一说自己对圆柱表面积的认识)“你知道圆柱的表面积指的是什么吗”(这样通过说一说让学生理解圆柱的表面积的含义,进而引出新课,揭示课题)“这就是我们今天研究的主题《圆柱的表面积》”这样设计让学生明白探究的必要性,让学生明确探究目的和探究方向,同时又具有挑战性,能激发学生的探究欲望。

  (三)动手操作合作研究汇报交流发现联系总结方法

  1、动手操作。“你知道圆柱的侧面是个什么面吗?你能想办法让它成为我们认识的图形吗?请你用手中的长方形纸、剪刀动手做一做,试试看”

  这样让学生自己动手进行尝试,教师进行巡视、引导和点拨,让学生想办法把圆柱的侧面展开,或者用长方形纸卷成一个圆柱的侧面,让学生明白把圆柱的侧面展开成*面图形,感受化曲为直的思想,获得直观的感受。

  2、合作研究。“你把圆柱的侧面展开后得到什么图形呢?你是怎样得到的呢?请你和你的同伴说说看”

  这是让学生明白用不同的方法会得到不同的结果,也就是圆柱的侧面展开可以形成不同的图形,让学生明白在什么情况下得到*行四边形,在什么情况下得到长方形,在什么情况下得到正方形。

  3、汇报交流。让学生把自己的展开结果展示给大家看,同时给大家介绍一下自己所用的方法。同时又让学生明白圆柱侧面展开图的多样性,这样来化解教学的一个难点。

  4、发现联系。

  首先用课件演示圆柱的侧面展开图:“刚才大家用不同的方法得到了圆柱的侧面展开图,有*行四边形、长方形、正方形,现在我以电脑中的圆柱形为例同大家一起来研究研究”课件展示展开后的图形“你们发现圆柱的侧面展开成长方形、正方形、或者*行四边形后什么变了?什么没有变?”这一过程是让学生明白,不管展开成什么图形,圆柱的侧面积是不会变的。

  其次,用课件把圆柱展开成长方形让学生进行探索和研究,开展讨论交流:“你发现展开后的长方形各部分与圆柱体的各部分有什么关系了吗?请和同伴说说看。”然后再次引导学生进行汇报,这一过程引导学生认识圆柱的侧面展开后可以是一个长方形,这个长方形的长相当于圆柱的底面周长,也就是圆的周长,宽相当于圆柱的高。也让学生感受到前后知识的联系,同时渗透了转化的数学思想。学生理解了之后再用课件进行演示,以加深学生的印象。

  5、进行推理,总结方法。

  学生理解了圆柱的侧面展开后得到的长方形与圆柱的各部分之间的关系后引导学生进行概括总结:“你知道长方形的面积怎样计算吗?那么圆柱的侧面积又是怎样计算的呢?”因为有了上述的探究过程,学生很自然而然的就会概括出圆柱的侧面积的计算方法:底面周长乘高,也就是圆的周长乘高。学生概括出公式以后让学生写下来,并读一读,用课件展示出来。然后让学生思考:“要求圆柱的侧面积需要知道哪些条件呢?”

  接着出一道尝试题(课件展示):已知圆柱体的底面直径是3厘米,高是5厘米,求圆柱的侧面积。做完后让学生说说解题思路和方法。

  6、归纳新知:“你现在知道怎样求圆柱的表面积了吗?先自己写出你的研究结果,再和同伴交流交流,然后向大家展示你的成果,让大家分享你的成功”通过独立思考——同伴交流——全班汇报——课件演示来完成。(这一环节,使学生动手、动口、动脑等多种感官参与活动,做到了在动手操作中发现,在合作中学习,在交流中成长,这样能够更好的突破难点。)

  7、及时练习:课件展示求圆柱的表面积的实际问题。让学生独立完成后汇报交流,然后全班评价,结合实际进一步理解求圆柱表面积的步骤和方法。

  四)联系生活巩固练习培养能力

  这一环节是内化知识,训练思维,培养能力,形成技能的重要环节,因而我设计的练习题在注重知识运用的前提下,注意联系学生的生活实际,让学生把所学的知识运用于解决生活中的实际问题中,使学生感受到数学与生活的紧密联系,数学来源于生活又作用于生活。这一过程我安排了三道大题,都是用课件展示:一是填空题,主要让学生进一步掌握圆柱的特征、圆柱侧面积和表面积的计算方法;二是两个图形题,分别计算圆柱的侧面积和表面积;三是解决问题,有四小道,1、是计算通风管需要铁皮的面积(教材7页4题),2、是计算无盖水桶的表面积(教材6页试一试),3、是计算油桶的表面积(教材7页5题),4、是计算5根立柱的油漆面积,并计算要用油漆多少千克,需要花多少钱。在内容上注意采取秩序渐进的原则,由易到难,这样即符合儿童的认识特点,又能兼顾大多数学生。同时也让学生明白在实际生活中计算圆柱的表面积时要具体问题具体分析,要结合实际进行计算。

  (五)全课总结促进构建

  这是作为新课必要的一个环节,通过学生自己总结和评价,既加深了学生对新知识的理解和消化,又让学生体验到学习数学的价值和兴趣。结合板书,让学生说说本课学到的知识,并说出是怎样学到的,(目的是让学生对本课所学的知识有系统的认识,培养学生整理知识的能力,引导学生总结学习方法,达到学会学习的目的。)

  附:板书设计圆柱的表面积

  长方形的面积=长×宽

  圆柱的侧面积=底面周长×高

  (底面圆周长)

  圆柱的表面积=侧面积+底面积×2

《圆柱的表面积》说课稿3

  一、 教材与学情分析

  1、教材分析

  本节课的教学内容是在学生认识掌握圆柱基本的特征,进而在理解的基础上掌握圆柱的侧面积、表面积的计算方法。教材是在学生掌握长方形面积、圆的周长和面积计算方法的基础上安排的,因而要以上述知识为基础,运用转化、迁移的方法理解和掌握圆柱体的侧面积、表面积的计算方法,并且能运用这一知识解决一些简单的实际问题。另外学好这部分内容,可以进一步发展学生的空间观念,为以后学习其它几何形体打下坚实的基础。本课教材分圆柱表面积的含义,计算方法和表面积的实际应用三部分内容。

  2、学情分析:

  为了使教学设计更贴近学情,有效的完成教学目标,我在课前对学生的知识基础和学习经验进行了调研,这是课前调研的内容和统计的结果:从调研结果可以看出学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积指的是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过奥数的。由此可知,学生对圆柱的表面积了解的比较少,存在着一定的困难。

  二、教学目标

  因此,依据教材和学情,我制定了如下教学目标。

  知识目标:在探究活动中,使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  能力目标:培养学生观察、操作、概括的能力,以及利用知识合理灵活地分析、解决实际问题的能力。

  情感目标:培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的观点。

  三、教学重点:能应用圆柱体侧面积、表面积的计算方法解决实际问题。

  四、教学难点:探究圆柱体侧面积、表面积的计算方法。

  五、教具准备:每组一套学具(包括能组成圆柱体的长方形、正方形、*行四边形和多个圆及其他图形)

  六、教学主要环节:

  为有效的落实教学目标,突破教学重、难点,在本节课中,我共设计了四个环节。

  (一)激趣导入,初步感受

  (二)动手操作,探求新知

  (三)巩固应用,拓展提高

  (四)回顾整理,总结收获

  第一环节:激趣导入,初步感受

  *面图形的面积学生已经会求了,而圆柱的侧面是个“曲面”,怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。

  课前,我发给每组学生一份材料袋,并对他们说:“同学们你们想不想亲手制作一个圆柱体?老师为你们准备了一些材料,请你们四人合作,制作一个圆柱。柱体部分的接缝可用胶条粘好,上下两个底直接搭在柱体上下就可以了,不用粘上。在制作的过程中思考一个问题:你们是如何选择材料的?你有什么新的发现?

  这样一来,把学生理解上的难点“由曲变直”,转化为“由直变曲”,根据学生的生活经验,“由直变曲”会容易的多。通过他们自己制作圆柱,直观了解曲面和*面之间的关系,有利于突破教学难点。同时提高了学生的学习兴趣。

  学生带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。

  第二环节:动手操作,探求新知:这是本节课的核心,也是重、难点所在,我主要通过4个层次来完成,使学生在小组探究的活动中,归纳圆柱体表面积的计算方法。

  第一层次:小组探究,自主发现

  学生在操作过程中很容易想到用长方形或正方形卷起来做成圆柱的侧面,然后选择合适的圆作为两个底,但对于学生能否想到利用*行四边形做侧面,学生的认识可能仍不清晰。因此,在小组探究时,我会到小组中巡视了解学生制作情况,及时对学生进行适时的启发引导,在这样的小组活动中,学生不仅对圆柱体有了更加准确的认识,也提高了合作、探究的能力及观察、概括的能力。

  第二层次:小组汇报,总结归纳

  在小组探究的基础上,分组汇报讨论结果,共分三种情况

  分别选择长方形、正方形、*行四边形作为圆柱体的侧面把它卷成圆筒,再选正好能和圆筒对上的同样大小的两个圆。

  在学生汇报完后,我让学生思考一个问题,为什么上下两个底面的圆必须是大小相等的两个圆?不相等行不行?

  通过动手操作,让学生从感官上加深对表面积的认识,为总结圆柱表面积公式打下基础。

  然后,我直接提出问题:你会求它的侧面积吗?你是怎么推导出来的?这里还是让学生自主探究,学生很有可能无从下手去思考,我及时点拨学生引导他们发现长方形的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。通过老师的点拨,学生能够找到这两者的内在关系,学生汇报时,由课件配合,让学生从视觉上进一步感受到长方形的长就是圆柱的底面周长,宽是圆柱的高。如果展开是*行四边形,*行四边形的底就是圆柱的底面周长,高是圆柱的高;如果展开的是正方形,正方形的一个边长就是圆柱的底面周长,另一个边长就是圆柱的高。从而推导出圆柱的侧面积公式就是底面周长×高。这一教学过程学生亲自参与知识的获取中,真正理解了公式的由来,感受到重新创造数学的乐趣,增强了学好数学的信心。

  在研究完圆柱侧面积的推导后,我又让学生来摸摸这个圆柱的表面,然后小结:我们摸过的所有这些面的面积和就是这个圆柱体的表面积。这里让学生摸的过程就是学生对表面积的认识过程,由于前面已经做了足够的铺垫,在学生理解了侧面积计算方法的基础上,我让学生独立想办法求出圆柱体的表面积。在学生活动的过程中,我巡视、指导,帮助有困难的学生。

  在本环节中,在学生的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在学生的亲历探究实践中得到了突破。

  第三层次:及时巩固,内化知识

  在教学重难点基本突破后,让学生根据材料中给出的信息,计算本组制作的圆柱体的表面积,然后全班交流,因为学生利用的材料不同,因此涉及到的信息比较全面,侧面展开图有长方形,有正方形,还有*行四边形。这样就使学生巩固了对圆柱体表面积的理解。

  第四层次:尝试应用,解决问题

  由于本课的教学重点是能应用圆柱体侧面积、表面积的计算方法来解决实际问题,生活中不仅有不缺面的圆柱体,而且还有只有侧面的圆柱体和只有一个底面的圆柱体。能够准确的判断所求圆柱的表面积共几个面对于学生来说是个难点。因此我利用学生手中的圆柱体进行了一系列的拓展练习,首先我拿出一个学生做好的圆柱,把其中一个底拿走,引导学生思考怎样求这个圆柱的表面积?为什么?通过观察,学生很容易发现这个圆柱体的表面积就用侧面积加一个底面积就可以了。接着再引导学生思考生活中哪些物体跟这个圆柱类似?(如水桶、圆柱体的笔筒)在这里我安排的一道求水桶表面积的练习。

  这样一来,使学生在丰富的感性认识的基础上,自主解决了只有一个底面的圆柱体类型的实际问题。

  然后用同样的方法,解决只有侧面的圆柱体这一类型的实际问题。同样还是拿出一个学生做好的圆柱,把其中两个底都拿走,问学生求这个圆柱的表面积怎么求?生活中哪些物体跟这个圆柱类似?(烟囱,钢管内、外部的表面积)我也安排了一道求烟囱表面积的练习。

  在前面的学习中,学生经历了自主观察并解决了生活中的一些实际问题,为了便于学生更好的区分他们,于是我引导学生按照圆柱体的面给圆柱体分分类:第一类是不缺面的圆柱体、第二类是缺一个底面的圆柱体、第三类是缺两个底面的圆柱体。为了更好区分,更好记忆,我又引导学生分别给它们起个名字:不缺面的就叫它全面圆柱体,缺一个底面的最典型物体就是水桶,我们就叫他水桶圆柱体,缺两面的最典型物体是烟囱,我们就叫他烟囱圆柱体。最后引导学生归纳出这三种圆柱体的表面积的求法:

  在这一系列的总结、概括、归纳中,学生完善了认识,全面了解了各类圆柱体的区别及表面积的计算方法,进而提高学生的总结、归纳的能力。

  第三环节:巩固应用,拓展提高

  根据以上内容,我准备在实践练习中安排四个层次的内容。

  1.一组已知底面半径、直径、周长和高求侧面积、表面积的对比习题,加深学生对圆柱表面积的理解,提高求表面积的技能。

  2.一道求烟囱圆柱体表面积的习题。学生进行练习后,追问:为什么只求侧面积就可以了。

  3.求一个用塑料薄膜覆盖的蔬菜大棚表面积的习题,追问:为什么求完全面圆柱体表面积后还要除以2。使学生养成灵活计算圆柱的表面积的习惯,培养实际应用的能力。

  4最后安排的是一个拓展题,求帽子的表面积。这个表面积是由一个水桶型的圆柱体和一个环形的表面积组成的。把圆柱体表面积和我们以前学过的环形面积及组合图形的知识揉和在一起,培养了学生多角度思考问题的能力。

  第四环节:回顾整理,总结收获

  在一节课即将结束时,我引导学生回顾整个学习的过程,学习时运用的数学思想,使学生在一节课的学习中不仅有知识上的积累,还能在学习方法上有所收获,使学生感受到学习数学的快乐和价值。

  以上就是我对这一部分内容的理解与分析,谢谢各位老师!

《圆柱的表面积》说课稿4

  一、检查复习,引入新课

  1、复习圆柱体的特征

  师:圆柱是由*面和曲面围成的立体图形。圆柱上下两个圆形的*面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?(学生回答后课件动画闪烁各部分名称)

  2、拿出圆柱体茶叶罐:想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)请大家猜一猜圆柱侧面是怎样做成的呢?

  引入:今天这节课,我们就一起来学习圆柱的表面积。

  【设计意图:通过复习,再次让学生明白圆柱的特征,同时创设“制作圆柱体茶叶罐怎样下料的问题”,激发学生的求知欲,也体现出学数学的价值。】

  二、引导探究,学习新知

  (一)教学圆柱表面积的意义。

  设疑:长方体6个面的总面积,叫做它的表面积。什么是圆柱体的表面积呢?(学生回答,教师板书:侧面积+底面积×2 =表面积)

  要求圆柱的`表面积,首先应该计算出它的底面积和侧面积。

  (二)测量直径,计算圆柱的底面积。

  圆柱的底面是圆形,怎样计算它的面积吗?(S=∏r2)需要知道什么条件? 现场测量茶叶桶的底面直径。(注意方法指导:量出底面最长的线段即直径的长度。课件动画展示测量方法)

  学生口答算式和结果

  (三)教学圆柱体侧面积的计算

  1、引导探究圆柱体侧面积的计算方法。

  (1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

  想一想,能否将这个曲面转化成我们学过的*面图形,从中思考发现它的侧面积该怎样计算呢?

  (2)学生动手操作。(剪圆柱形纸筒)

  (3)汇报交流研究结果。(随着学生回答课件展示)

  百度图片:

  小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为*面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

  2、计算圆柱体茶叶罐的侧面包装纸的面积

  师:(课件呈现圆柱茶叶罐侧面包装图片)

  求圆柱体茶叶罐的侧面包装纸的面积实际是求圆柱的什么?(侧面积) 再次测量茶叶桶的高,并把结果记录下来,独立计算。

  (四)教学求圆柱的表面积。

  1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

  2、学生根据数据进行计算。

  3、汇报计算方法及结果,强调单位的使用

  小结:求茶叶桶的表面积是为工人师傅下材料提供了基本数据,但是在准备材料时往往会比计算结果多一些,因为在具体操作时,尤其是在剪圆的时候会产生浪费现象,这是不可避免的。

  【设计意图:教师抓住圆柱表面积中的侧面积是学生学习的难点这一问题,通过四个层次的学习,有详有略,凸显本节课的重难点。教师让学生动手操作,经历圆柱侧面展开的过程,通过小组交流讨论,推导出了圆柱侧面面积的计算方法,有效的培养了学生的动手操作能力,适时渗透“转化”思想,学生的空间观念和思维能力得到锻炼。】

  三、解决问题,强化认知。

  (一)(多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图)引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?通过回答让学生感知圆柱表面积在实际生活中应用的意义。

  (二)根据要求练习。

  1、一个圆柱形油桶,底面直径是8分米,高是12分米,它的占地面积有多大?(只列式不计算)

  2、一台压路机的滚筒宽1.2米,直径为8分米。如果它滚动1周,压路的面积是多少*方米?(只列式不计算)(课件呈现压路机压路情景)

  3、做一个无盖的圆柱形铁皮水桶,高是5分米。底面直径4分米,至少需要多大面积的铁皮?(结果保留整数)

  根据学生的计算结果,教学用“进一法”取近似值。

  小结:计算圆柱的表面积要具体情况具体分析。要学会运用所学的知识合理灵活地解决生活中的实际问题。

  (三)操作练习。

  根据练习要求,小组合作测量计算制作所带的圆柱形实物的用料面积。 讨论:要计算制作这个圆柱形物体用料的面积,是求哪些面的总面积?需要知道哪些条件?怎样测量这些数据?

  测量:借助工具测量出需要的数据(取整厘米数),并做好记录。

  计算:根据量得的数据,列出相应的算式并算出结果。

  【设计意图:数学源于生活,又用于生活。教师设计不同层次的练习题,一方面是检查学生对知识的掌握情况,另一方面也是培养学生运用知识解决实际问题的能力。】

  四、课堂回顾,总结提升

  1、本节课你有何收获?

  2、教师小结:在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。求用料多少,一般采用进一法取近似值,以保证原材料够用。

  【设计意图:不仅对本节课的知识要点进行回顾整理,更重要的是提醒学生在解决问题时要具体情况具体分析。】

《圆柱的表面积》说课稿5

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激*趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  ………

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(*方厘米)

  侧面积:31.4×18.84=591.576(*方厘米)

  表面积:591.576+78.5×2=748.576(*方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(*方厘米)

  侧面积:31.4×18.84=591.576(*方厘米)

  表面积:591.576+28.26×2=648.096(*方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)